General Relativity: Solutions to exercises in
Lecture 1

January 22, 2018

Exercise 1

Consider a binary system of gravitating objects of masses M and m.

e First consider the case in which m < M and where the small-mass object is in quasi-circular
orbit around the more massive object. Draw the trajectory in two-space and the worldline in a
1 + 1- and in a 2 4+ 1-dimensional spacetime [Hint: use a co-ordinate system centred in M].

e Now let m = M and the binary be in circular orbit around the Newtonian centre of mass of the
system. Draw the trajectory in two-space and the worldline in a 1 4+ 1- and in a 2 + 1-dimensional
spacetime [Hint: use a co-ordinate system centred in the Newtonian centre of mass)|.

Solution 1

Figure 1: Trajectories in two-space for the cases m < M (left) and m = M (right).
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Figure 2: Worldline in 1 4+ 1-dimensional spacetime for the case m < M in polar co-ordinates (left
panel) and Cartesian co-ordinates (middle panel), and for the case m = M in Cartesian co-ordinates
(right panel).
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Figure 3: Worldline in 2 + 1-dimensional spacetime for the case m < M (left) and m = M (right).



Exercise 2

Consider a two-dimensional space and cover it with two co-ordinate maps: a Cartesian map where
{z*} = (x,y) and a polar map where {z*'} = (r,0).

e Find the co-ordinate transformation f: z# — z*
e Find the inverse co-ordinate transformation f=': z# — z#

e Find the components of the transformation matrix A“l; and its determinant J' := ‘01:“/ / 8$“‘

Find the components of the inverse transformation matrix A* , and its determinant .J := ‘8$“ JoxH

Show that A® A*, = §*, and that J J' = 1

Solution 2

The co-ordinate transformation is given by:

o=@
I { 0 = arctan (y/z) M

The inverse co-ordinate transformation is given by:

1 | x=rcost
f { y =rsind (2)
The transformation matrix is given by:
A ozt
H Oxt

00/0x  00/0y
v ) @yt
—y (22 + 2 (@42

cos 6 sin 0

1 1 : (4)

——sinf —cosf
r r

or/0x 8r/8y>

and its determinant is given by:

J = !8:}6“//896“‘
_ 1’2 N y2
@) )
= (@+y) " (5)
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or alternatively, using equation , is given by:

2 .9

cos“f sin“ 6

7o +1n
r r

1

;.

It is trivial to confirm that both expressions for J’ are equivalent.

The inverse transformation matrix is given by:

"
A, = 0O
Ox/0r 0x/00
~ \ay/or ay/(99>
cosf —rsinf
= ) (7)

sinf rcos@

v(@ ) —y ®
y(@@+y) " w )
and its determinant is given by:

J = ‘8x“/8x“/

= rcos?f 4+ rsin®f
=T, (9)

or alternatively, using equation , is given by

J- T
(1:2—1—@/2)1/2 (xz_,_yz)l/?
1/2
= (:c2+y2)/ . (10)

It is again trivial to confirm that both expressions for J are equivalent.

Matrix multiplication of equations and or equations and yields the identity matrix,

confirming the result A“l; A, = 0", Tt is also straightforward to confirm that J J' = 1 in both
co-ordinate systems.

Exercise 3

Consider a three-dimensional space and cover it with two co-ordinate maps: a Cartesian one where
{x*} = (x,y, z) and a polar one where {2*'} = (r,0, ¢). Address all of the questions in Exercise 2.



Solution 3

The co-ordinate transformation is given by:

r = (2 +y2+z2)1/2

f: = arccos |z (2% + y* + zz)_l/z]
¢ = arctan (y/x)

The inverse co-ordinate transformation is given by:

x =rsinfcos o
f1:{ y=rsinfsing
z=rcosf

The transformation matrix is given by:

!
/ 833“
" oz

or/0x

or/dy Or/0z
= | 00/0x 06/0y 06/0z
0¢p/0x 0¢/dy 0¢/0z

:13(:132+y2+22)_1/2 )—1/2

y (e +y’+ 22

Tz Yz

(22 +92)"* (22 42+ 22) (a2 + ) (a2 + g2 + 22)

y (22 +y?) 7

sin f sin ¢

x (2% + y2)71

sin 6 cos ¢ cos

1 1 1
—cosfcosp —cosfsing ——sinf
r r r

sin ¢ cos ¢

7 sin 6 rsind

whereby, upon simplification, its determinant may be found as:
J = |0x" [0z
_ (x2—|—y2)_1/2 (x2+y2+22)_1/2 ’
or alternatively, using equation , is given by:

B 1
r2sinf

!

2(1,2 —|—y2 +22)—1/2

(22 + 92"
a4y 22

0

It is once more trivial to confirm that both expressions for J’ are equivalent.

(12)

(14)



The inverse transformation matrix is given by:

Ox
A, = o
Ox/0r 0x/00 Ox/0¢
= | 9y/or 0y/o0 0Oy/O¢
0z/0r 0z/00 0z/0¢

= sinfsing rcosfsing rsinfcoso

cos —rsinfd 0
z (zz + yQ + 22)—1/2 o (xQ + y2)
= |y@+y+2)7" ye(@® 4y

z(x2+y2 +22)—1/2 _(xz +y2)1/2
whereby, upon simplification, its determinant may be found as:
J =r?sinf ,

or alternatively, using equation , is given by:

J = ($2+y2)1/2 (x2+y2+22)1/2 .

sinfcos¢ rcosfcos¢p —rsinfsing

~1/2

—-1/2

As before, it is again trivial to confirm that both expressions for J are equivalent.

As in Exercise 2, Matrix multiplication of equations and or equations and yields
the identity matrix, confirming the result A“;L A, = 0", Tt is also straightforward to confirm that

JJ' =1 in both co-ordinate systems.



General Relativity: Solutions to exercises in
Lecture 11

January 22, 2018

Exercise 1

Consider two co-ordinate systems in a two dimensional space {z*} = (z,y) and {z*'} = (r,0) which
are related through the well-known co-ordinate transformation

f: r= (IZ + y2>1/2
| 6 =arctan (y/z)

and its inverse

FL { x =rcosf

Yy =rsind

Discuss the differences between the transformation matrix employed to transform a covector in this

space
(&x)u = A”/; (&x) e (1)

and the one employed in the co-ordinate transformation

o = A”; el (2)

Solution 1

The matrix involved in the transformation of the gradient (ax) = A“;L (&x) is different from the
H w

matrix used in the transformation 2#" = A“l; x#. The two matrices, although written identically, are in
fact transposes of each other.

To illustrate this, consider the co-ordinate systems {z*} = (z,y) and {z*} = (r,6). It follows that
2t =, 22 = y; 2V = r, 2¥ = 0. One may now calculate the transformation between co-ordinate

systems as:
o' = r:Al; at
= ANzt 4+ A%
ozt | ox'
~ o * 82 "
or or




and similarly #? = (90/0x)z + (00/9y)y. We may now write the transformation matrix as:

A“/:: (87“/330 3r/8y> | ()
90/0x 00/dy

On the other hand, for <(~1x> = A+

" (Eix) , consider the following explicit transformation:
H w

_ ﬁ(ax) +%(ax) . (5)

Similarly, one finds (&m) = (0r/0y) (&x) + (06/0y) <€1m) . The transformation matrix may now
2 v b

be written as:
or/dxz 00/0x
A = (6)
or/dy 00/dy

= X" (7)

Clearly (X“L)T = AH;; from equation , i.e. the transformation matrices are transposes of each other,
as required.
Exercise 2

Consider two co-ordinate systems in a four-dimensional spacetime z* = (¢, z,y, 2) and z* = (u,v,y, 2)
that are related through the co-ordinate transformation

o u=t—=x
’ v=t+x

and its inverse

e Compute the matrices employed in the transformations
A N T B AH
=N =Nt (8)
e Consider a four-vector with components U* = (1,0,0,0)T in the co-ordinate system z* and
compute the new components U* in the co-ordinate system z* .

e Repeat the calculation for the new vector V# = (—1/2,1/2,0,0)T. Interpret the results.



Solution 2

For the first part of the question, computing the transformation matrices, first consider A“;L.

' oz
0" _
Ay = Oxt
ou
T ©)
from which one obtains the following non-zero components:
’ ou
AV = 2= 10
0 ot ) ( )
’ 8'11;
AY = = 1. 11
1 ax ( )
Similarly,
’ 6$1/
1 _
Au = Oxt
ov
- 2 12
axu Y ( )
from which one obtains the following non-zero components:
’ ov
AL = 2 =1 13
0 ot ) ( )
’ ov
AN = = =1. 14
1 aa: ( )

Finally, one may also show that the remaining non-zero components of A“l; are

A% =1, (15)
A% = 1. (16)

The transformation matrix may now be written as

1 ~10 0
P ERE

M=o 0 1o (17)
0 0 01

For the inverse transformation matrix we follow the same procedure, from which the inverse transfor-
mation matrix is found as

1/2 1/2 0 0
~1/2 1/2 0 0

B

N = 0 0 10 (18)
0 0 01



The second part of the question asks to calculate U in the new co-ordinate system, i.e. U*. Whilst
it is obvious that one can do this through matrix multiplication, consider instead the following:

U = AM

I
— A#O UO
= Ay, (19)

where the fact that the only non-zero component of U* is U° has been used. One can then read directly
from equation the solution as
U* =(1,1,0,0)" . (20)

For the third and final part of this question one can again apply matrix multiplication to obtain the
result, or consider the basis components as follows:

I

|- A“;V"
= AVO4 AV (21)

Considering this term by term yields

/

VO _ AO(’) VO + AO’1 Vl
= (1).(=1/2) +(-1).(1/2)
- -1, (22)

and

Vi o= AGVO ANV
= (1(=1/2) +(1)-(1/2)
=0, (23)

from which it immediately follows that

VH = (=1,0,0,0)" . (24)

The second part may be interpreted as follows. In {z#} the four-vector U* represents a particle at
rest, since all spatial components are zero: the particle may be represented as a vertical worldline
in a 1 + l-spacetime. However, when transforming to {z*'} one finds that U* has two non-zero
components, implying that the particle no longer appears stationary and is moving with a constant
velocity. Represented as a worldline in a 1 + 1-spacetime (u, v) the worldline would be a line of constant
positive (and finite) gradient.

For the third part, the vector V# has non-zero spatial components and so has a velocity of —1 in the
z-direction. Represented as a worldline in a 1 + 1-spacetime (¢, x) it would be represented by a line of
constant, finite and non-zero gradient. However, when transformed into {z*'}, the four-vector V* has
zero spatial components. So in the co-ordinate system {x“/} the four-vector V# appears stationary.



Exercise 3

Consider a 1 + 1 representation of the sub-spaces with two co-ordinate systems (¢, z) and (u,v).
e Draw in the two spacetimes the worldline of a particle with velocity & := dz/dt = 0.
e Draw in the two spacetimes the worldline of a particle with velocity & := k (x = kt) with k < 1.

e Interpret the results.

Solution 3

In this question it is assumed we use the co-ordinate transformations as defined in Exercise 2.

For the first part, let us term the first particle as particle A. Since 4 = 0 this implies x4 = const. The
particle is stationary and at rest in the (¢, ) co-ordinate system. In the (u,v) co-ordinate system one
may write

Uy = t—QZA, (25)
Vg = t+x4a, (26)

from which one may conclude
uA t—x A

= 27
VA t+ T A ( )
Since Qug/0va ~ (t —x4)/(t+2x4) = (va — 224)/v. Integrating this yields
2
u(v) =v — % + const. (28)

We may set the integration constant to zero without loss of generality. We may now plot equation
for various values of x4, the case of x4 = 0 corresponding to a straight line of constant gradient
1. The worldlines in both co-ordinate systems are illustrated in Figure [1| by the solid blue line.

For the second part of this question let us term the second particle as particle B. For particle B
one has ¥ = k (i.e. xp = kt), where k& < 1. The particle is now moving with constant velocity k
and can be represented as a worldline of gradient £ < 1 in the (¢, x) co-ordinate system. In the (u,v)
co-ordinate system one may write

up = t—kt=t(1—k), (29)
vg = t+kt=t(1+k), (30)
from which one may conclude
up 1—k
L _ - 31
UB 1—|—l€ ( )

The condition that (1 —k)/(1+ k) > 0 implies that |k| < 1. Considering values of k in this range, the
following condition on the gradient of the worldline may be obtained
up 1—k {<1ifk‘>0(CaseB),

v 1+k | >1if k<0 (CaseB).

5
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Figure 1: Worldliness for particles A and B in the (¢,z) co-ordinate system (left) and the (u,v)
co-ordinate system (right).

The worldlines in both co-ordinate systems are illustrated in Figure [1| by the dashed orange line.

For the final part of the question, for particle A, in the (¢, z) co-ordinate system it is at rest. However,
in the (u,v) co-ordinate system it is moving with constant velocity. For particle B, consider the limit
k — 1, whereby 0z /0t = 1 and Jug/0vg = 0. In the (z,y) co-ordinate system the particle is moving
with constant velocity, but in the limit & — 1, in the (u,v) co-ordinate system this implies that the
particle appears stationary (or the (v, u) co-ordinate system depending on how one labels the axes).



General Relativity: Solutions to exercises in
Lecture 111
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Exercise 1

Consider T as a contravariant tensor of rank 2 with components T*”. Under what conditions can this
tensor be cast as the product of two contravariant vectors U and V, i.e. such that T = U*V"?

Solution 1

In a given basis T is represented by a matrix T#”. In these terms a necessary and sufficient condition
to enable T" to be written as T"” = U*V" is that all columns of the matrix 7" must be proportional
to each other (linearly dependent). As an example, consider the following matrix:

1 2 4 8

2 4 8 16

3 6 12 24

4 8 16 32
Since the columns of this matrix are proportional to one another, we may choose U* = (1,2,3,4) and
Vv =(1,2,4,8), thus satisfying T = U*V".

Let us now consider this in a co-ordinate independent (covariant) way. 7" = U*V" if and only if

St =TMgx, is in the same direction, for any given x,,.

T —

Consider the set of orthonormal basis vectors e, e!, e*> and e* which by definition must satisfy

ete, = §* . The direction of S* is independent of the choice of z, (by linearity) if and only if it
is independent of our basis vectors e, e!, e? and e®. As such we may obtain the following condition:

TR, = T
CoS" |
where C, = (Cy,C1,Cs,C3) are constants. Explicitly:
T = CyS*
™ = CS*,
T = CyS*
TH = (C38* .

Thus the columns must be proportional to each other.

1



Exercise 2

Consider the following equation:
™ =U"+V".

Is T a generic tensor?

Solution 2

T is not a generic tensor. If T were a tensor then 7" A, B, would have to be a scalar. Instead, one
obtains
T"A,B, = (U+V")A,B,
= (U"A,) B, + (V"B,) A,
aB, + A, ,

where a = U*A,, and = VVB, are both scalars. It immediately follows that aB, + 34, is not a
scalar and therefore T is not a generic tensor.

Exercise 3

Consider F' as a tensor of rank 2 with covariant components F),, and that is also antisymmetric in one
co-ordinate system, i.e. I, = —F,,.

e Show that F),, is antisymmetric in all co-ordinate systems.
e Does the antisymmetry in the covariant indices also apply to the contravariant indices?

e If so, show that F'* is antisymmetric in all co-ordinate systems.

Solution 3

First consider the transformation of [, into another co-ordinate system:
Fo, = A" M,A”l,, F
= —A“H,A”V,Fl,u
= _AVM/AMV/F[J,V
- _Fylul .
It immediately follows that F),, is symmetric in all co-ordinate systems. The antisymmetry in covariant
indices indeed also applies to the contravariant indices since F' is a tensor. This can be shown by
considering the following;:
o guu’ gm/ F,u’z/
= —g“’u gyy FVIMI
= —g“”/gl’“/Fwyl
— _fwe

?

as required.



Exercise 4

For the first part of the question, consider the
the symmetric tensor B*” such that B*”

A,B"Y =
VA, =
V*B,, =
Solution 4
For the first identity consider the following:
A, B"

where we have used the antisymmetry of A, i

antisymmetric tensor A, such that 4,, = —A,, and

BY"*. Prove the following identities:

0, (1)
1
5 (VMV _ VVH) A,UV , (2)
1
3 (V™ + V") B, . (3)
= —A,B"
— A, B™

n the first step and relabelling dummy indices and the

symmetry of B*” in the second step, hence the required result. For the second and third parts, recall
that a generic rank 2 tensor may be written in terms of a symmetric and antisymmetric component as

follows:
1 1
ver = 3 (VI 4 Ve + 3 (VI —Vvr)
= Yy Lyl

Now consider the action of the antisymmetric tensor A,, on the symmetric part of V*, i.e. V),

v (k) AW

1
5 (VA + VA,

Ll NV

(VWAW + VWAVM)

— N

(VIYA,, —VIA,)

SO

Y

where in the first step we have relabelled dummy indices in the second term, and in the second step
we have used the antisymmetry of A,,. In a similar fashion we may also consider the action of the
symmetric tensor B, on the antisymmetric part of V#, i.e. Vi,

1/ [v] B,

S o

- (V*B,, —V"B,,)

— N =

(V*B,, —V*B,,)

— DN

(V*B,, —V"DB,,)



We are now in a position to tackle the second and third identities. For the second identity, consider
the following:

VA, = 1/ () A+ [kl A,
= i Auv
(Vv — V) A

1
5 uv

as required.

Finally, we consider the third identity:
VB, = V() B, + vkl B,
= ) B,
1
5 (V" + V") B, ,

as required.
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Exercise 1

Using a co-ordinate system (t¢,7,6, ¢), consider the metric line element given by

2

ds® = —dt* + a*(t) + 7% (d6* + sin”*6d¢?) | (1)

1 — kr?
where kK = —1, 0, 1.
e Show that a new co-ordinate system (¢, x, 0, ¢) the line element can be rewritten as

ds® = —dt* + a*(t) [dx* + f(x)? (d6® +sin® 0 d¢?)] . (2)

e Find the form of the function f(x) for k = —1, 0 and 1.

e Discuss the properties of the metric in the case of K = 0. [Hint: two metrics g and g’ are
conformally related if it is possible to express them as g = Q g’, where 2 = Q(z#) is a generic
function and is referred to as the conformal factor].

Solution 1

From the invariance of the line element we may write

ds* = —dt*+d*(t) T r® (d6” + sin® 6 d¢?)
= —dt* +d*(t) [dx* + f(x)? (d6° + sin® 0 d¢?)]
= ds”.

Letting dt = df = d¢ = 0 we obtain the relation

dr
—— =dy. 3
— = X (3)

This expression may be integrated directly to yield y as a function of r, yielding:



arcsinhr + ¢ ,

X = r+c, (4>
arcsinr + ¢ ,
for K = —1, 0 and 1 respectively, and where ¢ is a constant of integration. Note the inverse hyperbolic

function identity arcsinhr = In|r + /1 + 72|, which is also a solution for k = —1. Since f(x) = r we
obtain the result

sinh y ,
F) =9 x, ()
sin x ,
for k = —1, 0 and 1 respectively, and where we have assumed ¢ = 0.

For the final part of this question, setting x = 0 yields the line element as
ds® = —dt* + @*(t) [dr? 4 r* (d6* + sin”* 6 d¢?)] . (6)

By factoring out the expansion factor a(t) we obtain

dt?
ds? = a*(t) 0] +dr? +r* (d6* + sin®* 6 d¢?) | . (7)
Let us define the “conformal time” ¢, where dt? = dt?/a(t)?. We may now re-write the metric (7)) as
ds* = a*(t) [-dE® + dr® +r* (d6* + sin® 0 d¢”) | (8)
GZ(t) dsi/linkowski )

where the Minkowski line element is the line element for flat space. Thus in the case kK = 0 the metric
is conformally flat. This metric is in general known as the (Friedmann-Lemaitre) Robertson-Walker
(FL)RW metric and is widely used in cosmology to describe an expanding universe.
Exercise 2
Using a co-ordinate system (7, x, 6, ¢), consider the metric line element given by

ds* = O [—dn® + dx® + sin® x (d6* + sin® 0 d¢?)] . (9)

Consider now a new co-ordinate system (7, p, 0, ¢) where

94
S smn (10)
cos Y + cosn
2sin x
p = X (11)
cos x + cosn

and find the expression of the metric @ in this new co-ordinate system. Discuss the properties of this
new metric.



Solution 2

To calculate the expression for the new metric we must use the following co-ordinate transformation:
1l ’ 6/
g*" = A% A Bgo‘ﬂ : (12)

We must calculate the contravariant metric components since we only have (7, p) in terms of (1, x) and
not the inverse relationship. It is much simpler to calculate the contravaraint metric components and
then calculate the matrix inverse of the contravariant metric than to define the inverse transformation.
Since our metric is diagonal we may exploit the fact that ¢** = 1/g,s. Evaluating the non-zero
components of the transformation matrix, we obtain:

/ 87—
A, = —
0 a,r]
~ 2(1+cosncosy) (13)
(cos x + cosn)®

- 2sin x sinmn (14)
(cos x + cosn)®

or

— o
= A7,

and

AZ, =A% =1. (15)
Note that the transformation matrix is diagonal. The contravariant metric may now be calculated
coefficient by coefficient, yielding

& = <A0£)>2900 I <A0’1>2911
= g () - ()]
1 4
2 (cos x 4 cosn)? (16)
g = (A16>2goo+ <A1/1>2 11
IR
- [ ]
= —¢"", (17)



2/2/ 1
O2sin? y
_ g2

4

Q2 (cos x + cosn)? p2

1 0/
= _;gOO ) (18)

and

9313/ 1
02 sin? 0 sin”
— B
]. 2/2/
~ sin%0 g

1 0/0/
S ——— 19
p? sin? Gg (19)

Thus we may write the contravariant metric components in the new co-ordinate system as

-1 0 0 0
o 1 4 0 1 0 0
g” 7= Fay) 2 -1 (20)
Q (cosy+cosn)" | 0 0 (p?) 0
0 0 0 (,02 sin’ 9)
Let us now define a new conformal factor
~ 02 2
a2 — (cos x + cosn) | (21)

4

which immediately enables us to write the covariant components of our metric tensor in the new
co-ordinate system as

-1 0 0 0
~, 1 0 10 0
A I 2
0 0 0 p?sin®6
We may now write our metric in the new co-ordinate system as follows
ds® = 2 (—dT2 +dp? + p*dh* + p? sin® 9d¢2) : (23)

As can be seen in the above expression, the new metric is conformally flat.



Exercise 3

Given the four-vector u such that u®u, = —1 and the tensor h,, = g, + u,u,, prove the following
identities
hu =0, W RN =1, h* =3 (24)

v I

Solution 3

For the first identity, consider the following

hpu' = gupu' 4+ u,u,u”
= u, +u, (u,ut)

= Uy — Uy

For the second identity, we must first derive an expression for h*, as follows

W, = g"ha
o, + utuy, . (26)

Using this we may write the following

A
h*, 7,

(0%, + utu,) ((5’\ﬂ + utuy,)
= (5“,/5)‘“ + " utuy, + (Vuu“uy + utu,utuy,
= 0+ utu, + iy, + utuy, (ufuy,)
= & +utu,

= . (27)

For the third and final identity, consider the following

W= g"h,,
- glwg,uu—i_gwju,uuu
= o, +ulu,
— 41
- 3. (28)

Note: the tensor h,, defines a projection onto a hypersurface orthogonal to u* (i.e. hy,utu” = 0).
For any non-null vector u# (i.e. u*u, # 0), one may define the projection operator orthogonal to u* as

P, = hu

= Guw— ——

(29)



Exercise 4
Consider the following antisymmetric tensor
Fop = —2Ejqug) + €,5" Ho us . (30)

Express the vectors E and H in terms of the tensor F. [Hint: contract F,z with u? & ¢*#?° respectively.]

Solution 4

First, let us write the expression for the antisymmetric part of E,ug out in full, which reads as

Elaug = 5 (Equg — Egua) (31)

N | =

We may then substitute this expression into equation , yielding
F.p = —E,up + Egu, + eaﬁdh@ Us . (32)

Let us work with the above expression for the remainder of the question. Contracting F,s with u”
yields

Eupu’ = —Eaugu’ + Eguau” + ea675H7 ugsu®
= E,+ Eguauﬁ + eaﬁyan usu® (33)

Before proceeding further, let us turn our attention to the last term in equation . The Levi-Civita
tensor may be re-written in a fully contravariant form as

é v
€as = Jan Jpv € ", (34)

which simplifies the third term in equation as follows

EQBV‘SHA, usu® = Gop 9pv V5P H,

= Gop € usu, H, (lower index with gg,)

= Yoy RRLLTITR H, (0 +» v as dummy indices)

= —Gap 0, us H, (permute § +> v in o)

= —Jap s, H., (compare with second line)

= 0. (35)

We thus obtain
Faguﬂ = FE,+ Eguauﬁ

= hﬁoa E,B ) (36)

as required. This may also be written as

Fopu® = hog E° . (37)



For the second part of the question, first recall the definition of the dual of a tensor
1
F*0 = > Fap e (38)

Contracting F,5 with e®#7° yields

Foge®™® = 2F*°
= —E,uge®®’ 4+ Egug e + 606576[-]7 us P10 (39)

Let us attack the third term in the above expression by employing the identity we derived in equation

B as

g v
€ B,Y =9"g 55&5#1/ : (40)

«

With this expression we may re-write the third term as

eaﬁwHy us e = ghrg” H., ug ea@»wjeaﬁ'y‘S
= H"u” eapue™ (41)
We may then expand the contraction over the Levi-Civita tensors as
eaﬁweaﬁvé = -2! (5;15
_ oy o)
8 8
_ s 5
= 2 (53 0, =9, (5V) , (42)
from which we may immediately simplify equation , yielding
H" v eaﬁweaﬁ'ﬂS = 2H"u” ((53 (52 =9, 55)
= 2(H" — H'u’) (43)
We may now re-write equation as
207 = —Eaug e + Eguo € + 2 (Hu — H'u') . (44)

Recall from equation the vanishing of the contraction of the Levi-Civita tensor over two indices
with two 4-vectors. This suggests to us that contracting equation (44)) with us will allow us to eliminate
the first two terms in . With this knowledge in mind, contracting with wus yields

QF* Oy = —Eyugus B0 4 Esu,us €10 49 (Hazﬂu(; — H7u5U5)
= 2(HWus — H'u'us) | (45)
from which it immediately follows that

F%s = Huwus — H'ulug
HY + HWus . (46)



As before, the above expressions may be written more succinctly in terms of the projection tensor as

R Hy . (47)

For a physical interpretation consider an orthonormal comoving frame with v* = (1,0,0,0) and u, =
(—1,0,0,0), i.e. u*u, = —1. In this frame

Fpu’ = Fy
= FE,+ Eyu, . (48)
When oo =0
Foo = Eo— Eo
=0 (49)
Additionally

Fo = Ei+ Eou;
= F; (50)

where @ = 1,2,3. If F,3 is the electromagnetic field tensor then E; is the 3-vector of the electric field.
Next consider the dual tensor

ka’yéu(S — _F*'yO
= H" — H%" . (51)
When v = 0 then
F*OO - _ (HO . HO)
= 0 (52)
Additionally
F*iO — _(Hz _ Houz)

where again ¢ = 1,2,3. H' can be interpreted as the 3-vector of the magnetic field.



General Relativity: Solutions to exercises in
Lecture V

January 22, 2018

Exercise 1

Let F be a rank-2 antisymmetric tensor, G a rank-2 symmetric tensor and X and rank-3 antisymmetric
tensor. Provide explicit expressions for the following tensors: F,, Flu), Fiuw), G, Guw)s Xagys
X(apy)> Xlapyys X(apyr: Xlagly) a0 X(ap)y-

Solution 1
° B =—F,

® Fiu) =3 (Fuw — Fu) = 3 (Fu + Fu) = F

© Flu) =3 (Fu+ Fou) = 5 (Fu — Flu) = 0

e G, = 0 (the antisymmetric part of a totally symmetric tensor must be zero)

® Gy =G

® Xy = % (Xaﬂw — Xgay + Xyap = Xayg + Xpya — Xwﬁcz) - % (2Xaﬁw +2X 508 + QXBW)
= 3 (Xapy + Xyas + Xp1a)

® Xagy = 5 (Xapy T Xsay + Xyas + Xays + Xsra + Xy5a)
- % (Xapy — Xapy + Xyap — Xyap + Xpra — Xpia) =0

 Xiagyy = 3 (Xapy — Xpay) = Xapy

* Xagyy = % (Xapy + Xpay) =0

* Xagl(v) = X[aply = Xapy

* Xap)) = X(apyy =0



Exercise 2

Prove the following identities:
* X((a1 azean)) = X(a1 az..an)
® Xfjor azon]] = Xfon az...om]
® X(ar...loy amloam) =0

o X[al...[al am]...an] — X[al...al Qm...Qn)

Solution 2
o If Y, o, a, is a totally symmetric tensor then we may write

Oy Qgy oo Oy Yalocz...an 5 (1)

where 7; denotes permutation over the index i. We may thus write the symmetric part of Y as
1
)/(alag...an) - m Z Yaﬂlaw.‘.awn
- Ya1azman . (2)

Now, letting X(a,a...00) = Yayas..0n, We may write

Yiaiazan) = X((araz..an)
= X(alaz...an)a (3)

as required.

e Similarly to the previous question, if Y, 0,4, 1s @ totally antisymmetric tensor then we may

write
(=1)"Yar, amyecimn, = Yaraz.an » (4)
We may thus write the antisymmetric part of Y as
Y[Oéla%-a 1 = l Z(_l)ﬂ Yor any.a
n ol 71 Oy Oy,
= Yiias.an - (5)

Now, letting X as..0n] = Yaias...a, We may write

}/[ogag...an} = X[[alaQ-nan”
= X[a1a2...an] 5 (6>

as required.



e By symmetry (outer round brackets) we have

X(a1---[azam]---an) = X(a1---[amaz]---an) ) (7)

but by antisymmetry (inner square brackets) we have

X(al...[alam]...an) = _X(al...[amal]...an) ) (8>
and thus we may conclude that
X(al...[ozlam}...an) =0, (9)
as required.
e First consider ]
Xa1...[ozlam]...an = 5 (qu...ogozm...an - Xa1...anLal...an) . (10)
Now take the full antisymmetric part of this
1 ™
X[al.“[alam]...an] == 2_71' Z<_1) (onﬂl...awlawm...ozﬂn - Xawl...aﬂma,rl...awn)
1 ™
- ﬁ Z(_l) Xawl...ozwlawm...awn
- X[og...alozm...an} 3 (11)
where we have used the fact that Xaﬂ'l'“aﬂ'ma‘"'l“'aﬂ'n = _Xaﬂ'l'“a”l Ay iy, » @S TQUITEd.

Exercise 3

Let F be a rank-2 antisymmetric tensor with components F'*. From F construct another rank-2 tensor
antisymmetric tensor *F such that

1
F = §6aﬁ“l’Fa5 e, e, . (12)
The tensor *F is usually referred to as the dual of F. Show that the following is true
“(*F)=-F. (13)

Solution 3

We may write the dual of F in contravariant index form as

* 1% 1 (6% 174
P = Se P E g . (14)

Accordingly, the covariant form may be written, using the relation F,, = g,,9,sF"°, as

* 1 afyo
F;w = §gwygu(56 By Faﬁ
1
— af
- 56 MVFQB

1 e
= 59 ’ygIB(Se’y&u/Faﬁ

1

—€

9 'yép,uF’ya . (15)



We may now write

* [k v ]'a v (%
(F) = 56’3“(Fa/3)

afBuv 9
—  _oBu 675a6F7

v é
—2168) 1

S = s

(
% (64 0 — g% 6v) F0

1 12 14
— S (PP

S

Thus we obtain

as required.

Exercise 4
Let V be a rank-3 tensor with components V%7 and define
(*V)O"g7 = Vue’w‘ﬁ7 .

Show that the following is true
1
VIV, = == (V) (V)

3! opy

Solution 4

In addition to equation , for fully covariant V we may write

(*V)aﬂfy = VVGVCVB’Y :

From this we may immediately calculate the contraction as

(V) (Vg = V'V e,
= V'V, (=3164)
= =3V,

and hence we obtain )
V.U»‘/“ — 5 (*V>aﬁ’Y (*V)a57 7

as required.

(16)

(17)

(18)

(19)

(21)

(22)



General Relativity: Solutions to exercises in
Lecture VI

January 29, 2018

Exercise 1

Define the antisymmetric tensor F as F},, = 9,4, — 0,A,. Use the results from the previous exercises
to show that
F, =20,A, . (1)

Show that such a definition implies that
Faﬁ,u + F,Bu,a + Fl/a,ﬁ =0. (2)

Solution 1
For the first part we may simply write
Fo = 2 B (0,A, — &,Au)l
= 20,4, . (3)

For the second part of the question we must write out each of the three terms explicitly. For the first
term in equation we obtain

Faﬁ,y = a1/ (Faﬁ)
= 0, (0,45 — 034,)
= 0,0,A3 — 0,034, . (4)
For the second term
Faua = Oa(Fp)
= 0, (034, — 0,Ap)
= 0,084, — 0,0,A5 . (5)
Finally, for the third term
Foap = 05(Fra)
= 05(0,A, — 0,4A,)
= 030, Ay — 030, A, . (6)
Since 0,03F = 030,F, summing equations —@ leads to cancellation of terms, giving the result in
equation , as required.



Exercise 2

Consider a vector V with components V# relative to a co-ordinate basis, i.e.

V =V#), =Vle, . (7)
Define an object given by the partial derivative of the components of V| i.e.
UF=09,V" . (8)

Show that U,* is not a tensor. What are the implications of this result? What can be done to construct
a tensor out of measuring the derivative of a tensor?

Solution 2

From equation we may write
U, = o0,V
= 0,(V"ey)
= 9,Vt'e,+V"o,e, . 9)

For the second term in the above expression we may think of it as a vector written in terms of some
basis vectors. Let us re-write this as d,e, = '}, e,. We may now write equation @ as

U, = 0,Vle,+ V"] e
= 0,V'e,+ V" e, (a4 pin the second term)
= (O,V'+ VIt e,
= (VVV#) e# ) (10)
and thus we may write
ur=v,vt, (11)

where the V, we have introduced is defined as the covariant derivative.

Consider the term d,e, = I'}, e,. In flat (Minkowski) spacetime, in Cartesian co-ordinates, d,e, must
vanish as the e, are all constant, and thus I'}, must also be zero. However, in the same Minkowski
spacetime, transforming to (for example) spherical polar co-ordinates one would find the basis vector
components are not constant and are in fact functionally dependent on r and 6. As such, d,e, would be
non-zero in Minkowski spacetime. Since a tensor quantity is defined independently of any co-ordinate
system, the quantity U * cannot be a tensor.

The partial derivative is not a good differential operator when spacetime is not Euclidean but by
construction the covariant derivative does define the components of a tensor.

Exercise 3

Consider a line element in three-dimensional space
ds® = dr? +r2d6” 4 r*sin*  d¢? (12)

with a co-ordinate basis {e,, ey, e,}.



e Construct the corresponding orthonormal basis {e;, e, e (5}

e Compute the structure coefficients C’fé and C%. What is the difference between the two?

e Compute the structure coefficients C’fﬁ, C?q;’ Cgé and Og)qg' Are there others that are non-zero?

Solution 3

Since our metric is diagonal we can immediately read of the orthonormal basis vector components as

1 1
€ = €, €)= —©€p, e(z; = : €y, (13>
r rsin 6

from which it is straightforward to show that e; -e; = 1, e;-e; = 1 and e;-e; = 1. To convince
ourselves this is correct, consider the transformation between the co-ordinate basis and orthonormal
basis

dz’ = A’ da? | (14)
where
1 0 0
Azj =10 r 0 ) (15)
0 0 rsind

Using the co-ordinate transformation we may show that

di = da!
i .
= AAjdx]
= Al da?
= dr. (16)
Similarly, one may show that
dd = rdo, (17)
dp = rsinfdg . (18)

Now let us write the line element in terms of the orthonormal basis components and prove equivalence

ds? = gidi® + ggpdf” + g;5dg°
= di* +df* + d¢*
= dr? +r%d6? +r*sin’ 0 de? | (19)

hence the orthonormal basis vector components are correct.

For the next part of the question recall the definition of the Lie brackets of any two basis vectors,
which may be written in terms of the same basis as

[€q, €3] = C’gﬂe7 , (20)



where the components Cgﬁ are termed the structure coefficients. By definition a set of basis vectors
with all of its structure coefficients vanishing is a co-ordinate basis. We may now write

Cgﬁ = [emeﬁ]’y
= e,0,e5 —ezg0,e, . (21)

For the first structure coefficient, applying the above machinery we find

0
C’gé = [es, €]

_ v 0 v 0
= e"0,e; —e; 0, e;

r 1 0
= e; 81“ (;) — eé 89%(
1
As mentioned previously, C% = 0 since {e;} is a co-ordinate basis. For the final four requested structure
components we apply the same procedure for calculation. The results are as follows

ngg = [e,a,eq;r

= ef”ﬁy%g—eq@l’@y%g

= 0, (23)
cg = [eres]”

= e 0, e; - eéf’&, erfz’

= e/0, e(;’ —e’0,

1) 7
1
— 9,
(rsin@)
1
_ 24
r2sinf ’ (24)
) 9
Coo = [eé»%]
= eéya,, e(z)e - ed{'&, eée
= eéya,,%g—ef&ﬁeée
1
= — %)
rsin 6 5 (r)
~ 0, (25)



and

o = ’
06 = [eé’%}

_ v ¢ _ v ]
= g &,ed; eq;&,eé
— 0 ¢ v

= eéﬁgeé —eé&,%

1 1
B ;89 (rsin@)

cosf

r2sin6

There are no other non-zero structure coefficients.

(26)



General Relativity: Solutions to exercises in

Lecture VII

January 29, 2018

Exercise 1

Show that if g is the metric tensor, then its covariant derivative is zero, i.e.

V)\g,“, =0.

Solution 1
By definition VA, is a vector. As such we may write

VA, = gu (VLAY) .
We may also write

Vol = Va(guwA”)

= (vAg/w) A" + Guv (VAAV) .

Using equation we may rewrite the above expression as
VA, = (Vaguw) A"+ V,A, |

from which it immediately follows that
Vv A = 0 3

as required.

Exercise 2

Using the results of exercise 1, drive the following definition of the Christoffel symbols

o 1 (07
T, = 59 (03958 + D595y — 0s93,) -



Solution 2

Consider the following three expressions for the covariant derivative of the (covariant) metric tensor

vAguu = Guv — Pf\“#gm, - gfzzg#a (Z 0) ) (7)
V/Lgu)\ = Gvap — Fzyga)\ - Fz)\gua <: 0) ) (8)
Vyg,\u = 9xrpyv — Fg)\gocu - Fglug/\a (: 0) ) (9)

where we have (evenly) permuted the covariant indices, as well as having made use of the result of
exercise 1, namely that V,g,, = 0. We have also written partial derivatives as subscript commas for
the sake of brevity.

To prove the result, subtract the last two expressions from the first, i.e. —[ + @D] This
yields

g,uzz,)\ - gw\,u - g)\,u,u - F()\fugazx - Fiygua + Fzyga)\ + Fz)\gzxa + FS)\ga,u + F,%g,\a =0. (10)

By the torsion-free condition (i.e. T';, = I'},) and symmetry of the metric tensor (i.e. g, = gu,) the
red and blue terms cancel, yielding

Guvx — Guap — Gapw +2 F;O:yga)\ =0 ) (11>
which upon re-arranging gives
o 1
ga)\Fw/ - 5 (g)\u,u + o — g;u/,/\) . (12>

Multiplying both sides by ¢** gives

N 1
6§F,u1/ = 595)\ (gku,u + gl/)\,u - g,uu,)\) P (13)
which immediately simplifies to
1
Fﬁu - 595/\ (Iruw + Gor = Guvr) - (14)

Finally, making the substitutions f — «, u — 3, v — v and A\ — § we obtain the result

(0% 1 Q
By =359 ° (9580 + G5y, — G8v.6) (15)
as required.
Exercise 3
Prove the following identities:
v9a8 = Lapy +Tsay , (16)
gaua”/guﬁ - _guﬂawgau y (17>
0,9%" = —Tpg"" =T ", (18)
(ln ’g’),oc = glwg,uu,a7 (19)
1 1/2 . . .
VAR = Wau (Ig] / A*)  in a coordinate basis. (20)



Solution 3

e For the first part consider the action of the covariant derivative on g,g:

v’ygaﬁ = GaB,y — Fiag)\ﬁ - F;\,Bga)\ =0. (21)
Rearranging yields
GaBy = F:)ag/\ﬁ + F')y\,é’ga)\
= gl + 9aal3,
= Dgay +Tagy (22)

as required.

e For the second part consider the following expression:

(9ang™”) = (83) =0, (23)
which may also be expanded as
(gauguﬁ)y,y = gau,’yguﬂ + gaugué—y
= 0. (24)

Rearranging the above expression, and writing partial derivatives explicitly, we obtain

JonOr 9"’ = —g"° 0y (25)
as required.

e For the third part, let us consider the action of the covariant derivative on the contravariant
metric tensor:

V,ygo‘ﬁ = go‘é7 + Fﬁug“ﬁ + Ffuga“ =0. (26)

Rearranging and making use of the symmetry conditions of the metric tensor and Christoffel
symbol yields
0,9 = T30~ Thg 1)

as required.

e For the fourth part consider the metric tensor g,3, which is a rank-2 tensor and specifically a
matrix. For matrices one may consider the Jacobi matrix formula:

o N . avy 09 (%)
@det (90 (x%)] = Tr |adj (gap(z?)) BT ; (28)
where the adjugate of a matrix may be written as
adj (gas) = det (gap) (das)
= g¢*Pdet (gap)
= 9™l , (29)



where we have omitted writing the dependence of the metric on co-ordinates for brevity, and
written the determinant of the metric tensor as |g|.

We may now rewrite the Jacobi identity in equation in logarithmic form as

0
pye [Indet (gap)]

This may be written more succinctly as

1 0

= 46t (gug) D2° [det (gagp)]

1
- I h v,a
|g| r |:g ‘g‘gﬂ s ]

= Tr [gaﬁguy,a}

_ pv
= g g,uu,oc-

(ln |g|),a = g“l/gpu,a )

as required.

e For the fifth and final part, consider the action of the covariant derivative on A*:

VAR = Af 4T AV

Using the definition of the covariant derivative derived in exercise 2, we may write I', as:

1
FZI/ = _g'mS

2

(géu,y + Gusp — gm/,&) .

(30)

(31)

(32)

(33)

Whilst it is not immediately obvious, it can be shown that the last two terms in brackets in
equation (33) vanish. Consider the following:

g" (Gvop — Gus) = 9" 68#9,,5 — g“‘sc%gw,
= 36%5 - o Guv
= (96961/ - 3“9/“/ (gua = 961/)
0"g — 0'gu, (9 is a dummy index)

0. (34)
Consequently we may rewrite equation as
1
Fﬁy - §guég<5u,u . (35)
In the fourth part of this exercise we showed that (In|g[) , = 9"° g5, Using this we may write
1
i = 59" Gous
1
= 5 (ln |g|>,u
= (nlgl'?),
(l912).,
- e (%)



Returning to equation (32)) we may now re-write the expression as

(Ig2),,
FOONEL ey
(lg1'?) .
= A M+WA“ (relabel dummy index)
7 9
1 1/2 1/2
= " lg"24%, + (lg"2) , A¥]
_ 1 1/2 Ap
TR (lgI'2A ),u
1
= Wau(\g\l/ZA“) : (37)

as required.

Exercise 4
Optional: The covariant derivative of a contravariant vector U* is
vV, U" = 0,U" +TH U . (38)

Use this expression to obtain the covariant derivative of the covariant vector U,,.

Solution 4

There are several ways one can go about proving this. Let us consider two such methods.

e Method 1

Consider the following:

vV, (V*U,) = Vl;lz/Uu + ViU
= VAU, + T8V U, + VU, (39)

where the subscript ., denotes the covariant differentiation with respect to #* and we have used
the definition of V% . Since the quantity V#U, is a scalar we may also write

Vy (V“U#) = 0, (V#U;J

= VEUL.+V*U,, . (40)
Combining the above two equations yields
Vlquu + ViU, = V’quu + F/;AVAUM + VP (41)
which simplifies to
VFU,, =8 VAU, + VU, (42)

5



from which we may obtain

ViU, = VrU,, - TH VAU, .

Now let us set V* = §, which gives

which simplifies to

05U, = 05U, — T, 63U,

Usw = Uy — FﬁﬁUu )

where upon setting p <> « and then [ — p we obtain

as required.

Method 2

Now consider the expression

Unw = Uy — T%Us

V.U, = V,(9..U%)

- M+ guavaa
= Guo (Uo,lu + Flof,\U/\)
= o (Uo,lz/) + guarg)\UA :

(9ualU®), = Unw

= gMOWUa + Gua (Uojl,) ,

which upon rearrangement yields

e (Uojy) = Uu,u - g/wc,yUa .

Substituting equation into equation yields
VVUM = Uu,u - guoc,uUa + g/wérg)\U)\ :

From exercise 3, part 1, recall the identity

Guoa,y = g)\oarﬁu + gu/\ri\a .

This enables us to rewrite the last two terms in equation as:

_guaan + guarg,\U/\

—g)\aFﬁMU“ - guAF;\aUa + guarg)\U)\

—gmriu — g2 U + gnl0  U” (a4 A in last term)
Ao

_g)\ozryuu

A
—FVMUJ)\ .

We may now use the above expression to rewrite equation (50)) as

which may be rewritten as

as required.

VU, =Up, —T;,Ux

VU, =0,U,—T,,Uy,



General Relativity: Solutions to exercises in
Lecture VIII

January 29, 2018

Exercise 1
Consider the metric describing, in polar co-ordinates (r, ), a Euclidean space
ds? = dr? +r%0% . (1)

e (Calculate the Christoffel symbols and geodesic curves associated with this space, which are given
by the geodesic equation
d2z# dz® da”
T ——=0. 2
D2 e @)

e Combine the two second-order differential equations describing the geodesic curves into a single
first-order differential equation for r = r(#).

e What is the differential equation for a straight line in this space?

Solution 1

e First let us consider the components of the metric and their partial derivatives:

a = (5 0) - B
).

(
ar = (0 o) )
— 0. (6)

Next, recall the definition of the Christoffel symbols:

wo
g =
Guv,0

o 1 ad
By = 59 (958 + Gvs.8 — 9pvs) - (7)



Since a can only be r or # and the metric is diagonal, we may proceed as follows:

'S 1 rr
g = 59" (o + Gorr — 9par)

1 rr
= =397 Gur (8)
1
Tg, = 5999 (908~ + Gv0.58 — 9ov)
1
= 59" 905 - (9)

It immediately follows that the only non-zero Christoffel symbols are given by:
z& = -, (10)
1
rY, = -. 11
ré r ( )
Substituting these expression into the geodesic equation of motion we obtain:
i = 10, (12)
; 9 .
0 = ——rf6, 13
= (13
where an overdot denotes differentiation with respect to the affine parameter, \.

e For the second part of the question we may rewrite equation as:

]_ d 2 b
(7)) =0, (14)
which may be integrated to yield
-k

where k is a constant of integration. Next, starting from the line element and dividing both sides
by ds? and taking s as affine we may write

i =1, (16)

Using the chain rule we may write equation as:

dr do\* , [dO\’
Substituting equation into equation ([17)) we obtain:

[7'(6)? + 7] LA : (18)

rd

where a primed quantity denotes differentiation with respect to #. This may be simplified to
yield
r2

r'(6) = +r i 1. (19)



e For the final part of the question, let us integrate equation (19)), which describes geodesics in this
spacetime. Rearranging both sides of equation gives:

dr

2
©1

= =+df . (20)
Integrating both sides of the above equation then yields:
2
arctan e 1 +(0+6p) . (21)

Making use of the identity cos [arctan (f(z))] = [1+ f(z)%] "* we may take the cosine of both
sides of the above equation, yielding:

k4
7= cos(f + 6p) , (22)
which may be finally written as
rcos(f + ) = k* | (23)

which is precisely the equation of a straight line in polar co-ordinates. Thus the geodesic equations
of motion, which we derived in the first part of the question, are straight lines.

Exercise 2

Consider the metric describing the two-dimensional spacetime covered by co-ordinates (¢, z) and with
metric

dz? — dt?

2 __
ds® = 2

(24)
e Compute the Christoffel symbols.

e Compute the geodesic curves of this spacetime.

Solution 2

e As in question 1, let us first start by writing down the metric components and their partial
derivatives. First consider the components of the metric and their partial derivatives:

G = ( L 02> , (25)

r () .
2t~3

Guvt = ( 0 —2t ) s (27>

v — 0. (28)



Next, recall the definition of the Christoffel symbols:

(0% 1 (07
By = 59 ’ (966,"/ + Gve — gﬁ%tS) . (29>
We may now write:
1
thﬂ, = 59“ (gtﬁﬁ t Gyt — gﬂmt) ) (30)
xr 1 xrxr
By — 59 (gx,é’,'y + Gryz,B _g—r@'ﬁf) : (31)

For equation only f =~ =t or x yields non-zero terms, and for equation only g =,
~ =t (or vice-versa) result in non-vanishing terms. It immediately follows that the only non-zero
Christoffel symbols are all identical and are given by:

1

For the second part of the question let us first write the geodesic equations of motion for this
spacetime. As in exercise 1, an overdot denotes differentiation with respect to the affine param-
eter. With the Christoffel symbol components we may write the geodesic equations of motion
as:

P % (2 1% | (33)
i o= %ix' : (34)
and from the line element we may write
T S (35)
We may write equation as
Z
7= 2- (36)
which may be rewritten as
% (Ing) = % (Int?) . (37)

Integrating both sides of this equation then yields
i = kt* (38)
where k is a constant of integration. Substituting equation into equation yields
Pt — 2 =+t (39)

which may be solved for  to yield

t=+tVE22 -1 . (40)
We may now obtain a differential equation for = as a function of ¢ by dividing equation by
equation , yielding

D) = (41)
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Figure 1: Hyperbolic geodesics as described by equation for the case o = 0 and £ = 1. Note
that the geodesics (orange curves) are asymptotic to the lightcone (dashed black line).

which may be integrated to give

1
T — T = i%\/thQ—l
= V2 k2, (42)

where z( is a constant of integration. Finally, upon squaring both sides and rearranging we

obtain
t2 (x — 20)?

(/k? (/K
which is the equation of a hyperbola. Thus the geodesics curves in this spacetime are described
by hyperbolas. This is illustrated in Figure [T}

=1, (43)



Exercise 3

Given a scalar function ¢ = ¢ (z#), prove the following identity in a co-ordinate basis:
1

O¢ := VAV ¢ = =

0u (V=99"0,0) . (44)

Solution 3

First, consider the following

Vﬂvu¢ = (glw¢;1/);“
= (90w, (45)
since ¢ is a scalar quantity. Recall the identity we derived in Problem Sheet 7, question 3, part 5:

1 1/2
Al = 9|72 (ol Au)# : (46)

Using this identity and substituting A" = ¢""¢ ,, we may now write

1 v
VIVuo = 1 (1917 0) (47)

which is the desired result, as required. Note that we use |g|'/? and \/—¢  interchangeably.

Exercise 4

Optional: Derive the geodesic equation from the definition of a curve of extremal length.

Solution 4

The Euler-Lagrange equations of motion are derived by extremising the length of a curve. For a given
metric tensor g,, the Lagrangian may be written as

1
[» = §gwjgt‘ui’y 5 (48)

where, as before, an overdot denotes differentiation with respect to the affine parameter. The Euler-
Lagrange equations are by definition written as

d /0L oL
Y <a_) = o (49)

Let us now derive each term. First we calculate the RHS of :

oL 1 e
dx 59#%&95% : (50)



For the LHS of equation first consider:

oL _ 1 (o ., 1 (0
— = —guw | == )T+ Zgut .
9o 99m \ pia 99w\ Gaa
IR T
= 59,“,(55.% +§guy(5g‘x“
1

NS S
= 59041/37 +§gual'

= gau"tu s (51)

where in the last step with have made use of the fact that p and v are dummy indices, as well as the
metric tensor being symmetric. Now we differentiate with respect to the affine parameter, yielding:

d [/dLC d
R - —_ .Y 5
A (aa':a> Oy o) 3+ gan
5 0 . 3y
— xﬁ@ (gau> M 4 gaufE“
= Gappt’i" + g it . (52)

Note that the dummy indices 8 and g in the first term in equation enable us to expand this term
as follows:

iy 1 iy
gauﬂxﬂx“ D) (9aus + Gapu) Bt (53)
Using equation we may write the Euler-Lagrange equations as:

1

. 1 4. e
GapZ" + 2 (Gop, + Gopu) D §guy,ax“m ) (54)

Bringing all terms to the LHS and relabelling the dummy indices p and v in the RHS of equation (54))

as 0 and p respectively, we obtain

. 1 3.
gaux“ + 5 (gau,ﬂ + JapB,pu — gﬁu,a) lﬁxﬂ = 0. (55>

Next, multiply both sides of this expression by ¢°®, yielding

. I sa 3.
xé + 595 (gau,ﬁ + gaﬂ,u - gﬁu,a) lﬁxu =0 ) (56>

where we have used the fact that ¢°g,, = (52. Recalling the definition of the Christoffel symbols this
expression may be written more succinctly as

i+ Ty’ =0 . (57)

Let us now relabel the dummy indices as § — «, u —  and  — =, enabling us to rewrite (57)) in the
more familiar form
i+ 15,45 =0, (58)

which is precisely the geodesic equation, as required.
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Exercise 1

Consider a torus in a two-dimensional Euclidean space described by the spherical co-ordinate system
(0, ¢). The line element of the torus is then given by

ds? = (b+ asin ¢)® d6? + a>de¢? | (1)
where b and a denote the torus radius and the radius of its section, respectively.
Compute the Christoffel symbol components and the non-vanishing components of the (Riemann)

curvature tensor. (Hint: remember that there is only one linearly independent component of the
Riemann tensor in a spacetime of dimension 2).

Solution 1

First let us consider the components of the metric and their partial derivatives:

N2

o ((b + aosm o) (?2) 7 (@)
N2

g = ((b +a %m ¢) a92> ’ (3)

Guve — 0 ) (4>

Gy — (2@ (b+a som }) cos ¢ 8) ' (5)

Next, recall the definition of the Christoffel symbols:

o 1 ad
By = 59 (958 + Gvs.8 — 9pvs) - (6)



Since « can only be 0 or ¢ and the metric is diagonal, we may proceed as follows:
1

oy, = 59" (905 + 9305 — 9a7)
1
= 5990999,¢ (7)
_acos¢ (8)
~ b4asing
1
ro, = §9¢¢ (9sp7 T Gotrm — G8v,0)
1
= —§9¢¢gae,¢ 9)
) .
__(b+asing)cosé . (10)
a
It immediately follows that the only non-zero Christoffel symbols are given by:
a Ccos ¢
M = -7 11
o¢ b+asing ’ (11)
(b + asin ¢) cos ¢
ry, = — - : (12)
Next, recall the definition of the Riemann tensor:
Ruuaﬁ = Fﬁ,@,a + FZaFf/)B Fl;a B Fuﬂrua ) (13>
which may also be written more compactly as
Ruuaﬁ = (Flljﬁ,a + FZaFIIj,B) (Oé < /6) ’ (14>

where (a <+ ) denotes Writing down the first term in brackets with a and 3 exchanged. Looking at
the first term in equation we know that F“ 5.0 1s mon-zero only if a = ¢ (partial derivative is
non-zero). Next, we are free to choose (u,v,B) such that the Christoffel symbol is also non-zero. This
yields the choices (i, v, 8) = (6,0, ¢) or ((b,@ 0). Let us take (,u, v,B) = (0,0, ¢), which yields

0 o 0 0 9
= 1Y r? ) r¢ —r‘9 —I‘ere—ra
= 0¢,¢+ 00 0¢+ dot 0o — Loge — Loolos 06
0 0 \2 0 0 \2
= T+ (Tos)” —Toss — (Tos)

= 0. (15)
Instead, let us now try o = # and 3 = ¢ in equation . We obtain

Next, let us ensure the partial derivative of the Christoffel symbol does not vanish by choosing p = 6
and v = ¢, which yields:

Rlyy = Tpolis — TG0 — Toell
= —Tgpe — 0T
a(a+bsing)  a’cos’¢
(b+asing)®  (b+ asinp)’
asin ¢

- (b+asing) an

2



Consequently we may calculate the (only) non-vanishing component of the fully-covariant Riemann
curvature tensor as:

Rosos = GooR’ 494
= asing(b+asing) . (18)

Exercise 2
Consider the two-dimensional spacetime with line element
ds* = dv? — v?du® . (19)

Compute the Christoffel symbols and the non-vanishing components of the curvature tensor.

Solution 2

As in question 1, let us first start by writing down the metric components and their partial derivatives.
First consider the components of the metric and their partial derivatives:

aw = (o ) (20)

y 0
gM = (0 —’02) ) (21)
0 O
Jupw = (0 —27}> 5 (22>
G = 0. (23)

Next, recall the definition of the Christoffel symbols:

o 1 (07
By =59 °(9sp,y + Gvo,p — Gprs) - (24)

We may calculate the Christoffel symbols as before:

v 1’U’U
B = 59 (9o + Goros — Gv0)
1

= - 591}1}967,1)

= v, (25)



U

1 uu
gy = 59" (usr + Grup — 9870)
1

= 59" (upr + Grup)
_ 1 uu
- 29 guu,v
1 1
1
= —. 26
- (26)
Thus we obtain the only non-zero Christoffel symbols as:
r, = v, (27)
1
re = —. 28
G o= (28)

Next recall the Riemann curvature tensor as defined in equation . Let us first make the first term
vanish by choosing a = u, yielding
noo e p i p

vu, put v

Now let us expand the sum over the dummy indices p:

uu— vB

Next, let us focus on ensuring the ') 5 term is non-vanishing, which requires us to set § = v:

Ruuuv Sl L + I Fﬁu,v _%FZ’LL - FﬁvFZU : (31)

vuT vv uuT Yo

From equation let us first consider = u and v = v:

Rumw - Fgu%—i_%_ Pgu,v - FZszu

- _F:)Lu,v - (PZU)Z
1 1
o2 2
_ 0. (32)

Let us next (and finally) consider the case where p = v and v = w:

Rvuuv = %_{— FZurgv - FZU,U _%
— V% TV

= v (1) -1
v
= 0. (33)

We may conclude that for this particular spacetime the Riemann tensor vanishes everywhere. As such,
we may say that our spacetime is flat.



Exercise 3

Consider a geodesic curve C and its tangent vector V. Compute the expression for the second convective
derivative of a vector field A along C, i.e. an explicit expression in component form of

VvVvA . (34)

Recast the resulting expressions in terms of tensors that you have already encountered and interpret
the results.

Solution 3

First we must calculate the action of the convective derivative on A:

VvA = VAV,A°
VH (9, A%+ T9A°) . (35)

0

At this point it is important to remark that equation (35)) is actually a rank-1 contravariant tensor
which we may call T* (all other indices are dummy indices). With this in mind, we may write the
second convective derivative of A as

VvVvA = Vy (VyvA)
= V'V, T°
= V" (0,T* +T5,T7) . (36)

From here we must explicitly expand , yielding:
VvVvA= V¥ [ (0,V*) (0,A%) + V*0,0,A% + (0,VH) FffBA'B
« B « B
+ VEO, I A7 + VIT' 50, A
+ T VIO, AP + ngwrgﬁAﬁ] . (37)
Let us now write the above expression as:

VyvVyvA = V¥

(0,V1) (8,A%) + V19,0,A° + (8,V") T2, A?
VTS0, + VIO, T, AP 4 T5, V10, A4°
V|V T5A° 4 T, VT AP

= VY@V (0,A%) + VF0,0,A% + (9,V*) T4, A?

VTG0, + VO, Tas AP 4 T3, V10, A

V| VRO, Ta AT+ TE, VTS AC (38)



which may be further simplified as:
VVUvA = V[ (@,V") (A% + T3 A%) + V70,0, A°
VIO, To AT + VIS0, A7 4+ VITS,0, 4|

v o} @ B
VYO, T A7 4 TE, VT AP

V2 [@,V7) (V,A%) + V0,0, 4°
+ V”@VFZ‘BAB + QV“Fzﬂ&,Aﬁ] (letting p — S and p <> v)

v a 2B a 7P B
+ VIV, A% 4 T, T0 A7) (39)
At this point we remark that all terms in the first square brackets of equation (39)) are unchanged
under interchange of p and v indices, whereas the two terms in the second pair of square brackets are
not. As such, if we calculate 2V, V ,; A® we will find that the first set of terms in the square brackets
will vanish. Doing this for the second convective derivative we derived we obtain:
VYA = VIV (9T A% + T, T, A7 = 0,T55 A7 — T T, A7)

= VYVFR%, A7 (40)
thus we obtain an expression which depends on the Riemann curvature tensor. The expression VyyVy,
(or V;,V, in component form) thus measure differences in a vector which is transported in different
directions around (say) a closed loop but which reach the same point. This equation is known as the
geodesic deviation equation.
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Exercise 1

Show that the second covariant derivatives of a scalar field commute, i.e. that
VoV =VsV,0 . (1)

Obtain the expressions for the following third derivatives: V.V 3V,)¢ and V|, V5V, ¢. [Hint: remem-
ber that the covariant derivative of a scalar field is a vector.]

Solution 1

e For the first part of the question we consider the action of the covariant derivatives in order,
remembering that the covariant derivative of a scalar is simply the partial derivative acting on
that scalar. This yields:

VoVsd = (d3s),
= (08)4
= ¢,aﬁ_¢,5réa5' (2)

Since the Christoffel symbols are symmetric in their lower indices (torsion-free) and partial deriva-
tives commute, we may conclude that V,Vg¢ = VsV ,0, as required.

e For the second part of the question, let us first define the covariant vector W, = V,¢. Now

consider
VaVViyo = Vo VW, (3)
and similarly
VoV, Vg =V, V,Ws . (4)
Using the result of the first part of the question we may write
VW, =V, Wjs . (5)

Employing the above we may now write
1
VaVVyo = éva (VsWy + V., Ws)

= V.V,
VaVsVio . (6)



e For the final part of the question let us directly expand the expression in question:
ViaVgVa¢ = ViaVgW,
1
) (VaVWy = VgV,

1 é
- §R O‘B'YW(S

1 1
= §R aﬁ7¢§7

1
— 535057% . (7)

Exercise 2

Prove that for any second-rank tensor, the covariant derivative commutes, i.e. that

Vo VsV = VvV, V9 (8)

Solution 2

First recall the fact that V5V is a rank-1 contravariant tensor, thus we may define W = VzV#5,
Next, let us write explicitly the expression for W*# as follows:

WH = 9gVH? + TV VP 4 TP vmd (9)
We may now write the covariant derivatives acting on V% as:
V. VgV = v, W
= O W41, W7, (10)
Thus we may write the LHS and RHS of equation as:
VaVsV™ = 0,05V + 0, (D%V7) + 0, (T75,V7) 4 T2, 05177 4T, T,V
+ I TV (11)
and
VoVl = 950,V 4+ 05 (%V7) + 05 (T70,V°0) + 1%, 0,V + 17, 1%,V
+ T, I,V (12)

Consider each term in eqns. & , and let us refer to these equations as L. and R respectively,
along with the indices 1-6 indicating terms 1-6 respectively in each expression. Under o <+ f3:

Ly = Ry,
Ly, = Rs,
Ly = Ry,
Ly = Ry,
Ls = Rsg,
L¢ = Rj.

We may thus conclude that V, V3V = V3V, V% as required.

2



Exercise 3

Optional: Find the matrix of the Lorentz transformations corresponding to a boost v* in the z-direction
followed by a boost v¥ in the y-direction. What happens if the order of the boosts is reversed?

Solution 3

Let us write the Lorentz boost matrices in the x- and y-directions respectively as:

Yo o VzUz 0 0
2Vz T 00
0 0 01
and
Yy 0 oy O
O 1 0 O
Ay = Yoy 0 7y 0 (14)
0O 0 0 1
For the first combination of boosts we obtain:
VeVy  VaVyUz  YVyUy O
YeVyVy VaVyUaUy Yy O
0 0 0 1
Similarly, for the reverse transformation we find:
Yz Vy VU Yz Vy Uy 0
e e e yvevy 0
e S (16)
0 0 0 1

Clearly AyA, # A;A, and so the transformations do not commute.
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All of the following exercises are to be considered in a special-relativistic context and assuming
Cartesian co-ordinates where necessary.

Exercise 1

Within Special Relativity, consider a four-vector V with components:
V:\/get—i_\/?ex- (1)

Determine if V is timelike, null or spacelike. Compute the angles between V and the unit vectors e;
and e,.

Solution 1

First let us consider the inner-producut of V with itself:

2 2
VoV = (VB) eet (VE) e e+ 2VEV e e,
= —3+2+40
= -1 <0, (2)

therefore V is timelike. For the angles, first let us consider the t-component. From the inner-product
we may calculate the angle between V and e, as:

V-et
]V-V]1/2]et-et\1/2
= V3 <-1, (3)

cost, =

which is not satisfied for any real #;. Similarly, for 6, we find:
cosl, = V2 > 1, (4)

which is also not satisfied for any real 6,.



Exercise 2

A particle with rest mass m and four-momentum p = mv is analysed by an observer with
four-velocity u. Compute the following:

e The total energy of the particle
e The kinetic energy of the particle
e The magnitude of the spatial momentum p := /p;p’

e The magnitude of the three-velocity v := /v;v*

Solution 2

Let us work in the rest frame of the observer. In this frame:

u = (17 Q) ) (5)
Ua = ( 179) ) (6)
p* = (E7£) ) (7>
Pa = (_E7]_9> 9 (8)
where p is the three-momentum.
e The total energy may be obtained directly as
E = —pouo
= —Pau” . (9)

e Starting form the expression for the total energy of a particle as E? = p?c?> + m2c* one obtains
the rest mass of the particle as:

m? = E?_| £|2
= —pop” — pip'
= —pap”, (10)
from which the kinetic energy of the particle may be directly derived as:
1
KE. = -mu]?
V=Pap® v?

VR v (1)

N RN~ DN

e Starting again from the expression for the total energy of the particle, the magnitude of the
three-momentum may be calculated as:

p = (E2 _ m2)1/2

= [ o] (1)



e Finally, the magnitude of the three-velocity may be calculated directly as:

v = 2
E
1 2 2\1/2
= 5 (B2 =m’)
2\ 1/2
_ (1 _ ﬁ)
2
1/2
Pap”
= |1+ (13)
(ppu” )2]
Exercise 3
Define the four-acceleration of a particle with four-velocity u as
dut
= — 14
where 7 is the proper time. Show that a-u = 0, i.e. that the acceleration is orthogonal to the
four-velocity. What does this mean in a frame co-moving with the particle?
Solution 3
Let us start with the following identity for a particle in General Relativity:
uut = -1, (15)
from which it immediately follows that
d
e (wu') =0 (16)
Expanding the above expression yields:
du
—_ my = 9 TH g m
T (1) dr "
= 2a,u”
0. (17)

We may thus conclude that a-u = 0, as required.

In a frame co-moving with the particle, u* = (1,0). In this frame a,u* = 0 implies that ap = 0 by
necessity, but that the spatial components of the four-acceleration, a;, are arbitrary.
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Exercise 1
Consider the stress-energy-momentum tensor of a perfect fluid
" = (e + p)ulu” +pg"” (1)

and its conservation equation

vV, =0 . (2)

Show that the equations (2) lead to the Euler equations, i.e. to the equations of conservation of
momentum

(e+p)Veu=—[Vp+ (Vup)u] . (3)

[Hint: use the projector h = g + uu]. Do equations (3) bear resemblance with the Newtonian Euler
equations?
Solution 1
First, let us write out the covariant derivative of the stress-energy-momentum tensor:
VvV, = (e +p),u'u” + (e + p) (u“wu” + u“u”w) + p.ug" . (4)

Let us now us the projection tensor hn, = gar + Uau, to project orthogonally to u, yielding

hao V, T = (e+p),u[u*u s {wu”)] + (e + p) [ (v u st ()
+ (u“ga,,u”m + uau“u,,u”m) ] +p 08 + p utug
= (e+p)uuny + Do+ pputu, (5)
where we have used the fact that u,v” = —1 and uu”,, = 0. Since ha, V,T"" = 0 we may now write
(6 + p)uuua;u = - (p,a + p,uuuua) y (6)
which is equivalent to
(e+p)Vyu=—[Vp+ (Vup)u] , (7)

as required.



In the Newtonian limit we may adopt the following approximations:
o pKe,
® €= po,
o VXK1,
e goo = —(142¢), |¢| < 1, where ¢ is the Newtonian potential.
We may immediately let (e + p) — po, and through expanding the covariant derivative we obtain
po (U e, — Fﬁmuﬁu“} = —Do — UU'D,, - (8)

We now take: (i) ugu* ~ O(v?) for B # p and ugu* = —1 for f = p and (ii) uqu”p, ~ O(v?) — 0.
With these in mind we obtain

po [t + TP | = = ©)
Recall from Problem Sheet 7, Exercise 3, part 5 we derived the following expression:
1
Fﬂﬁa = 595595@& . (10)

Since spacetime is now flat and ggo = —(1 + 2¢)), so ¢°° = —(1/go0) & —1, since |¢| < 1. This implies

Fﬁﬂa = FOOa
1
v S(-1)[-(1+20)],
= ¢, (11)
hence we obtain
Lo (uuua,u + gb,a) = Do (12)
which may be rewritten as
1
u“ua,u = ———Pa— ¢,O¢ 9 (13)
Po

which is precisely the (Newtonian) incompressible Euler momentum equation with a constant and uni-
form density. This may be written more succinctly as follows. First define the specific thermodynamic
work, w, where w = p/py and the gravitational acceleration g = —V¢. The material derivative is
defined in general relativity as % = uMV, and in the Newtonian regime as % = % +u-V. We may
now rewrite equation as

Du

Exercise 2

The stress-energy-momentum tensor of a scalar field ® is defined as

1 1 o
T‘ul, = E (@L(I) &,CI) — éguy 8a(1>8 (I)> . (15)
Derive the expression for the conservation of energy and momentum (2) in this case. Interpret the
results.



Solution 2

We first write out the covariant derivative V#T),, = 0 as follows
. . 1 )
VH (4rT,,) = ol +0,0 M~ §gw, (D D))" . (16)

Defining the differential portion of the third term as A = (¢ ,P*)* we may write

A = Q1P 4 D ot
— gaﬁgm@mu@ﬁ + @aqya;#
— 55(1),v;uq)ﬁ + @ P
_ @"B;“Cbﬁ 4 q)’aq),a;u
20 o (17)

Equation becomes

VH(4rT,,) = ¢V, +P,0 0 — D,
— q);uq)y+(q) ;u_qyu)@“

Y T g%,ﬁ )@,
— ’“CID v+ (@ —Poy) g,
= ’“CDV—{— (CI),,,Q — q)au)@a (18)

Since partial derivatives commute, and the covariant derivative of a scalar is simply the partial deriva-
tive, the second term in brackets vanishes and we may write

V" (47T,,) = ® 1D, . (19)

Since we assume @, # 0 and ¢} = @} we may write the conservation of energy and momentum as

=0, (20)
which is equivalent to

0P =0. (21)
Thus ® satisfies the wave equation for a scalar field in vacuum.
Exercise 3
Show that the Einstein equations in vacuum reduce to

R, =0. (22)



Solution 3

Let us start from the definition of the Einstein Tensor
1
G/U/ = R,ul/ — §Rguy .
In the presence of matter the Einstein field equations, G, = 87T, may be written as
1
ij — §ng = 87TT/“, .
Multiplying both sides of this equation by g** yields
% 1 uv "y
9" R, — éRg 9 = 87g" T,

which simplifies to
R =—4nT |

(23)

(24)

(25)

(26)

where we have used the fact that ¢*Vg,, = 4 and defined T' = ¢""T),,. Substituting R = —4xT" back

into equation (24)) yields, upon simplification

1
Rﬂl/ = 87 (T#V — EQ#VT> )
In vacuum 7}, = 0, which implies 7' = 0, and thus we obtain
R, =0,

as required.

(27)

(28)
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Exercise 1
Consider the spherically symmetric static line element

ds* = —A(r)dt* + B(r)dr? + C(r) dQ* , (1)
and compute the expressions for the non-zero Christoffel symbols. Use this result to compute the 00
covariant component of the Einstein equations in vacuum, i.e. R,, = 0.

Solution 1

e Whilst one may calculate the Christoffel symbol components directly, we will derive them from
the Lagrangian for the metric. First let us write the Lagrangian as

1 . . .
£:§(—At2+B7‘2+C«92+CSiH2€(bz) , (2)
where the dependence of A, B and C on r has been omitted for brevity and an overdot denotes

differentiation with respect to the affine parameter, \. We now systematically derive the Euler-
Lagrange equations of motion for each of the four components of our metric. For the t component:

oL

oL .

= , )
d [oc o

where primed quantities denote differentiation with respect to r. Thus from the Euler-Lagrange
equations we obtain the geodesic equation of motion for ¢ as

o (%’)mi. (6)



This may be immediately compared to the geodesic equation of motion for ¢, yielding the non-zero
Christoffel symbol components as

1 (A
Fttr = Ftrt = 5 <Z) : (7)
Next we consider the » component of the Euler-Lagrange equations, yielding
a[, . ]- 112 ! -2 ! N2 ! a2 12
E—E(—At—i—Br—i—C’@—l—CsmMﬁ), (8)
oL :
— = Brt
d foLy . .

We may now write the geodesic equation of motion for r as

LA, LB\, 1[CN\s 1/(CN .5,
7= 2(B)t 2(B>T +2<B)0 +2<B>sm€¢, (11)

from which we directly obtain the Christoffel symbols as

- % (%’) 7 (12)
1 /B

r, - (§> ’ (13)

- _% (%’) | (14)

[y = —% (%) sin@ . (15)

Now considering the § component of the Euler-Lagrange equations we obtain

% = ('sinf cosf? (16)

% = Coi, (17)

%(%) — O (18)

We may now write the geodesic equation of motion for 6 as

/
9:—<%)7’9+Sin00089¢2, (19)
from which we directly obtain the Christoffel symbols as
1/
r, =1 = (= 2
ré or 2 (C) ) ( O)
F9¢¢ = —sinfcosf . (21)



Finally, we consider the ¢ component of the Euler-Lagrange equations, obtaining

d

dA

oL
= =0 22
8¢ ) ( )
oL _ C sin?0té (23)
o¢
oL o _ . e
3_¢ = (C'sin®0r¢p+Csin200¢+ C sin“0¢ . (24)
We may now write the geodesic equation of motion for ¢ as
. o .
gb:—(a)f"Q—ZcotHHqﬁ, (25)
from which we directly obtain the remaining non-zero Christoffel symbols as
1/’
¢ _ 1o _
[ =T%, = cotf . (27)

e For the second part of the question, recall the definition of the Riemann curvature tensor

Rg5 =T %y = Ty 5 + Ty — T s (28)

The Ricci tensor is then defined as

RBE = Raﬁaé

= Faﬁé,a - Faﬁa,é + Fuﬂsza - Fuﬁarzé . (29)

The covariant 00 component may now be written as

ROO

0.0 — Loao _E F”OOFO‘HQ — FMOaFa;LO

000 + ool — ol 0

o0 + T 000 = Mool o

Moo + T 00l % — Fuoorouo Sl A

o0, + ool e = Tool ro — T, T 0o

0.+ To0l % = 2L 00l g

o0 + 100 (Foro + L7 T+ F¢r¢) — 21"l

F7"0(),7‘ + 1—‘TOO <FT7”7" + Fere + F¢r¢> o FOTO) : (30)

Substituting the values for the Christoffel symbol components into equation (30| we obtain, upon

simplification

Ry = 5— +

14”7 1A .C" A B
2B ZE{ } (31)



For completeness, the remaining non-zero covariant components of the Ricci tensor are

R — _lA_”_O_”+1£/ él_i_gl +1g g+£’ (32)
T 24 ¢ "44\4 " B) ' '2c\cCc " B)"
1" 1¢' (B A
R = 1‘55%?(5—2)’ (33)
R33 = R22 SiHZQ . (34)
Exercise 2
Using the Lagrangian
2L = gopi®i’ (35)

where an overdot corresponds to differentiation with respect to the proper time, show that the geodesic
equations

i+ T80 =0, (36)
are equivalent to the Euler-Lagrange equations
oL d (oL
e dr (37) =0 (37)

Solution 2

Let us first calculate the first term in equation :

oL 1
a3 - = 3908l T

oxy 2 (38)

Now we consider the bracketed second term:

iYe 1
1

D) (gwx‘ﬁ + x'agow)

= Gard® (39)

Finally, we differentiate equation (39) with respect to proper time, yielding:
d (0L d (Gun) % + guni®
— =) = —(9u)x oy L
dr \ 0z dr Joy Joy
= iﬁgav,éiﬂ + gcw:i

= oy 580 + Gand® (40)

«

Now we may write down the Euler-Lagrange equations, and solving for £ we obtain

e co s .5 -
JayT = 59046,756 $ﬂ — Jany, 6T T

1 o 1 5. 5.
= 59045#1"&‘%‘6 - 5 (ga%cslﬁxa + gé%alﬁxa) , (41>

4



where we have made use of the symmetry under interchange of § <+ a in the second term on the right
hand side. Since ¢ is a dummy index we may relabel it as 6 — (3, yielding

1

ga'yj‘:a = 5 (ga,B,'y - ga'y,ﬁ - gﬁ%a) j;ajcﬁ . (42>

Multiplying both sides by g™, using the identity g.,¢"* = ¢/ and bringing all terms to the left hand
side we obtain )
B+ 597 (9o G0 — Gap) 878 = 0. (43)
It is straightforward to confirm that the term multiplying #°%? is precisely T'* B = r op and thus we
obtain
BT i’ =0, (44)

which is the geodesic equation of motion, as required.

Exercise 3

Optional: Using the Einstein-Hilbert action

S = /d%ﬁR, (45)

show that the application of a variational principle 6S = 0 yields the Einstein field equations in vacuum,

ie.
1
Ruu - §g,u1/R =0. (46)

Solution 3

First we may write

6S =0 < 5/d4a7\/—gR:0. (47)

Now let us vary /—g, yielding

5 (V=g) = —2\(/5{_9 . (48)

Now recall from Problem Sheet 7, Exercise 3, part 4, we proved the following result:

(lIl |g|>,a = glwg;w,a . (49)

This implies that
9o =99"" G, ; (50)

and thus we may write dg as

0g = 99" ogu
= —99wog" . (51)



We may now write 0 (/—g’) as:

9 G 09"
o(Vg) = =

1 (=g
R PP
2y=g "™
1
= —5\/—9 G 0" . (52)
We must next consider the variation of the Ricci scalar R = g"”R,,,. We may write this as
OR =0g""R,, +g"" R, . (53)
Substituting equations and into equation yields:
5/d4x\/—gR = /d4 [ (\/ g)R—i— v—g 5R]
1
= d437 V=g [ 59
= d4x\/—g |:5 ( - g/,u/ R) + glw 5Ry,l/:|
(0g

= /d‘lx\/—g

w 09" R+ (09" Ry, + 9“”5Ruu)]

Guw + 9" 0R,) =0, (54)

where G, = (R;w — %gW R) is the Einstein tensor. It is now clear that in order for us to obtain the
Einstein field equations in vacuum, the second term in brackets in equation (54)) must vanish.

Let us now turn our attention to the variation of the Ricci tensor, 0R,,. First, recall the definition
of the Riemann curvature tensor

Ruuaﬁ = Fluu/o’,a + Fuparpuﬁ - va,f FH Fpl/oc : (55)
Next, consider the variation of the Riemann curvature tensor:
SR, 5 = Oa (01" 5) + (0T%,,) T 5+ 1", (6T7,)
- 8,3 (6FMVO¢) - (51"Np5) Fpl/oc - F’upﬁ (5pra) . (56>

This expression can be written much more succinctly in terms of covariant derivatives. The first and
fourth terms contains a partial derivative, so we consider the following:

Vo (0T"5) = 84 (0T"5) +T%,, (6T7,5) —T%,, (6T" 5) =T, (6T%,,) | (57)
Vﬁ (6FMIJQ) = 85 (6FMIJ0{) + Fuﬁp (5Fpua) - Ppﬁy (51—Wpa) - fo)ﬁ (6Fuup) . (58)
It immediately follows that the difference between equations and enables equation to be

written as

(5R“mﬂ =V, (M’“VB) — Vg (oI*,) . (59)
We may now calculate 61, as follows:

0R,s = OR",.4
= vOl <6Fal/,6’) - V5 (5Faua) ’ (6())



and thus we obtain upon relabelling indices (8 <+ v followed by f — u):
6R, = Vo (0T%,) — V, (6T%,.) . (61)
We may now write the second term in brackets in equation (54)) as:
9" 6Ruw = Va(g"or*,) =V, (¢"r°,,)
= Va(g™ore,, —g'“or”,,) | (62)

where we have let a <+ v in the second term. We may now write the second term in equation as
/d4x\/—g g oR,, = /d4x\/—g Va (g“’”éFO‘W —g'eorr,,) . (63)

To proceed further, recall Problem Sheet 7, Exercise 3, part 5, where we proved the following identity:
1
A® = —(V/—gAY) . 64
= (), ()
We may define A% from equation as
A® = ghrore,, —g"orr,, (65)

which enables us to rewrite equation as

/d%ﬁg““&RM = /d4338a (V=g'A%)
=0, (66)

since this is a surface integral, yielding a constant boundary term, and by Stokes’s Theorem vanishes.
We may finally write

4S = /d4x\/—g 09" G =0, (67)

and so we may conclude that
1
G :Rw,—§gu,,R:0 , (68)

i.e. the Einstein field equations in vacuum, as required.



General Relativity: Solutions to exercises in
Lecture XIV

January 29, 2018

Exercise 1

Using the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
2

ds? = —dt? + a*(t) + 7% (d6* +sin®*6d¢?) | (1)

1 — Kkr?
where k = —1, 0, 1. Compute:

e the non-zero Christoffel symbols
e the non-zero components of the Ricci tensor

e the expression for the Ricci scalar

Solution 1

e The first part of the question asks us to calculate the non-zero Christoffel symbol components of
the FLRW metric. Let us begin by writing the Lagrangian for the FLRW metric:

1 2
L=3 (—t’2 +tT—— _CLWQ %+ a*r® 0% + a*r” sin® 0¢’2> : (2)

where primed quantities (/) denote differentiation with respect to the affine parameter, \. We
have also written a = a(t) for brevity. Next we employ the Euler-Lagrange equations, which may

be written as: oL 4 /or

— - — =0. (3)
dx®  d\ \ Oz

The Euler-Lagrange equations are equivalent to the geodesic equations of motion (see Lecture

XIII, exercise 2) and so we can read off the Christoffel symbol components directly. First, we

consider the t-component:

oL : r 202 | 222 42
il aa(l_m2+7”9 + r*sin 9(}5) : (4)
oL

'

d foc\ .,
a(a) = (6)



where an overdot () denotes differentiation with respect to t. We immediately obtain:

tl/ —

- r
1 — Kkr?

We may now read off the Christoffel symbol components directly, obtaining:

t
Frr

t
FOG

t
Iy

aa 12

aa

1 —kr2’
aar?
2

aar’sin® .

—aa(r*0” +r*sin®0¢?) .

Next, we consider the r-component of the Euler-Lagrange equations:

oL a®

o' 1—kr2
d (%) _ 2aa L a?
dx \ or' 1 — kr? (1-— /17“2)2 1 — Kkr?

We thus obtain the geodesic equation of motion as:

a

KT
= 2=ty — ———r"? 41

a 1 — k12

from which the Christoffel symbols are immediately obtained as:

r o __ 17T
Frt_Ftr

T
FTT‘
T
F@@

"
F¢>¢>

)
KT

1—kr?’

—r(1 —kr?)

—r?sin? 0(1 — kr?) .

We now consider the #-component of the Euler-Lagrange equations:

oL
o6
oL
o0/

dx \ oo’

= a*r*sinfcosf ¢? |

— CL2T2 9/ ’

This gives the geodesic equation of motion for # as:

d
(85) = 2aar*' 0 +2a*rr" 0 +a*r* 0" .

] 2
9" — —2gt’9'— Zr'0 +sinfcosb ¢ |
r

a

(1 — kr?)0? + r?sin® 0(1 — kr’¢) |

(14)

(22)



from which the Christoffel symbols immediately follow as:

a
[ =T% = P (23)
1
FGT@ Fe@r = (24>
r
F9¢¢ = —sinfcosh . (25)
Finally, we consider the ¢-component of the Euler-Lagrange equations:
oL
= — 26
By : (26)
oL
90 = a*r*sin?6¢'0 (27)
d 8‘C 2 2 !t 2 2 !l 2.2 : /! 2.2 2.2 //
o \og = 2aarsin® 0t ¢' + 2a°r sin®0r' ¢’ + 2a°r“sinhcos 00 ¢ + ar*sin” 0 ¢" (28)
from which we obtain the geodesic equation of motion for ¢ as:
/! a !l 2 !l !/
=-2-t'¢ ——r'"¢ —2cothb ¢ . (29)
a r
Thus the final non-zero Christoffel symbols read:
a
F¢t¢> = F¢¢t = (30)
1
¢  _ 1o _
Frqb_rdnr - ;7 (31)
[ =T%, = cotf . (32)

e For the second part of the question, recall the definition of the Ricci tensor, which is the con-
traction of the Riemann curvature tensor over the first and third indices. This may be written
as:

RMV = Ra;wa/
= Fa,u,u,a + Fp,u,yrapa - Fa,u,a,y - Pp,u,arapu : (33>

The FLRW metric is spherically symmetric and possesses no off-diagonal terms, i.e. g, = 0 if
i # v. Let us consider the four terms in the definition of the Ricci tensor for p # v.

In this case 'Y, , = 0V p1 # v (see the Christoffel symbol components). The third term ', , =0
also, since I'*,, oc f (2#) and thus I'Y,, , = 0 since p # v.

For a spherically symmetric metric I'Y,, = 0 if o # p # v, which follows from the definition of
the Christoffel symbols. Using this, it may be shown that for all six independent combinations of
(1, v), with pu # v, that I*, I'*  —T* T = 0. We may thus conclude that R,, =0 for u # v.

Let us consider the diagonal components of the Ricci tensor term-by-term. First the ¢t component:
0 0
Rtt = Fat,a + Fpttrapa - Foztoz,t - Fptozrapt : (34>

3



For the third and fourth terms we obtain:

where the index i denotes spatial co-ordinates (r, 6, ¢). Thus we immediately find:

(07 .
I tot

i
I tit

_ 3(@(1—2@2) ’
a

p «a —
I taF pt

:(F

= 3

a

P TV
r tiF pt

iti)g (only p =i gives a nonzero result)
2

5
a2

Rtt - —32 .
a

We next consider the rr component of the Ricci tensor:

For the first term:

Rr‘r =I“

rr,&

FOé

7,0

For the second term:

For the third term:

For the fourth term:

We thus obtain:

FOC

ro,r

+ Fprrrapa - Fara,r - Fprarapr .

— t r
=T rrt + r rr,T

@’ +ai+k 2272
B 1 — kr? (1—rr2)®
Fprrrapa = Ftrrrata

= Ftrr (Fltl) + FTM' (FZM)

_ 30°+2k K2r?

— 1 — /{7“2 (1 — Klrz)z .
- Fi'ri,r

2Kk2r? K

p «a
r rar pr

(1—/<;7’2)2+1—m"2_r_2'

_ t i
- Fprtr pr + Fp’rir'pr . 4
Frrtrtrr + Ftrirltr + Fzrirlir
= QFTrtFtrr + (Firi)Q
K2r? 24 2

(1—/@r2)2+1—/$r2+ﬁ'

B 26 4+ 24> + ad
N 1 — Kkr?

RT‘T

(35)

(41)



The 06 component of the Ricci tensor yields:
Roo = T% 0 + 0000 = T%a0 — Tr9al %0 -
For the first term we obtain:
[0 = Ft@@,t + Mg
= —1+3kr* +7r%a* +ad) .
For the second term we obtain:
[Pl = Tl + Tl
= Tl + gl
3a%r? + k2 — 2.
For the third term we obtain:
Faea,a = F¢9¢,0
= —cosec?d .
For the fourth term we obtain:
Fp&arapO = Fp@trtpe + Fp@iripe
= TP g+ T + T, T
= T T + T+ |
= T T + Tl + TV, I 6
= 209"y + [y, g
= 200, g + T7oT0 g + 100, I g + F¢9¢>F¢¢9
2
= 21T gp + 207’ + (F¢0¢>
= 24%r? + 2k1% — 2 + cot?h .

We thus obtain:
Rgg = 1% (26 +2a° + ad) .

Finally, we consider the ¢¢ component of the Ricci tensor:
0
_ T« P o o 0 o
Roo =g 0 + 15T % = Dogary = T gal s -
The first term gives:

Iy
= —cos’0+ (d2+ad+3/£) r?sin?6 .

(0%
0

The second term gives:
14 a _ t « r « 6 a
ool 0 = TMgpl e + T gl "0 + 1641 00
_ Tt i r i 6 ¢
= Dl + Tl + 17541,

= (3d2+/f)rzsin29—1—sin29.

5
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(45)

(46)

(47)

(51)

(52)



The fourth term gives:
« _ t T 0 ®
Paal %0 = Tl gy T 17, T g+ TPl + T T
— T9¢ 1t ¢ 1 ¢ 10 t ¢ r ¢ 0 1o
= Dl s + 106 g6 + 1601 g6 + (F ool to T 1 66171 + 1641 9¢>>

_ ¢ 1t ¢ ¢ 10
= 2<F¢tr¢¢+r¢rr¢¢+r¢er¢¢>

= (2a°+2k) r®sin®0 — 2. (53)
Thus we obtain:
Ryy =1?sin’ 0 (25 + 20° + a i) . (54)
Defining A = 2k + 2a® + a @ we may write the non-zero Ricci tensor components more succinctly
as:
i
Ry = —3- 95
tt a ) ( )
A
Ry = gu'g . (56)

e For the third part of the question we are asked to calculate the Ricci scalar. This follows
straightforwardly from equations f:
R — g'LLVR,LLI/

= ¢"Ru+ 9" Ry

= 3-+9"%i5
a a
- A

— 32432
a a
6 ) ..

= ﬁ(m—i—f—i—aa) . (57)

Exercise 2

Exploiting the results of the previous exercise, use the Einstein equations for the FLRW metric to
derive the Friedmann equations. For simplicity set A = 0.

Solution 2

Since Exercise 3 requires A > 0 we will also assume this in the following solution. The Einstein field
equations may be written as:

1
R,uu - §g;wR + Ag,uz/ = 87TT;W ) (58)
where
T, = (e +p)uyty + pguy - (59)
We are in the comoving frame of the fluid, where u* = (1,0) and u, = (—1,0), and therefore:
Et = €, (60)
Ti = pgii - (61)



Considering the ¢t component of the Einstein field equations we obtain:

1
Ry — §gttR + Agy = 8Ty,

.. 3
— —32+—2(m+d2+ad)—/\:87re
a  a

. (3)2:%(&f+A)—£%, (62)

which is the first Friedmann equation. We now consider the spatial component of the Einstein field
equations:

1
R;i — anR + Agii = 81
A

1

= Giiy t Gii (——R + A - 87rp> =0

a 2

. -2
. 9% _ % — a_2 +A—8mp=0 (use equation (62))

a a®> a

a 4 A

_ - = 3 — 63

which is the second Friedmann equation.

Exercise 3

Optional: Consider the case of an equation of state where p = —e and A > 0. Derive the evolution
equation for the scale factor. What type of universe is this?

Solution 3

In the comoving frame the stress-energy-momentum tensor of a perfect fluid may be written as:

1", = (e+p)uu, + po}
- diag(_eapvpap) : (64)
The spatial component of the conservation equation (V7" = 0) trivially vanishes, implying uniform

pressure. However, it is straightforward to show that the time component yields the fluid conservation
equation:

é+3g@+p>_o. (65)

For the given equation of state, this implies that ¢ = 0 and hence e = ¢y = constant. Substituting this
into the second Friedmann equation we obtain:

a oy +A
— = —e J—
a 3 °"73
— 4=Ca, (66)



where C = (A + 8meg)/3. Now, since A > 0 and ey > 0, then this implies that C > 0. Integrating
equation directly yields:
at) = ¢Vt 4 eV (67)

where the integration constants ¢; and ¢, may be calculated from this equation and the first Friedmann
equation as:

cL+cg = ap , (68)
Cag —r = ao, (69)

where a¢ and ag are the initial values of a(t) and a(t) at t = 0. Equation has a minimum at:

\/F C1 ’

and since t > 0 for the universe we know that if ¢y > ¢; then there exists a minimum value of ¢ > 0.
We assume c¢; and ¢, are both positive. Thus, if ¢; > ¢, the universe expands exponentially from ¢t = 0.
If, however, ¢y > ¢; then the universe contracts between ¢t = 0 and t,,,;,, before expanding exponentially
thereafter.

tmin —

(70)



General Relativity: Solutions to exercises in
Lecture XV

February 5, 2018

Exercise 1

The simplest solution to the linearised Einstein equations is a plane wave of the form:
}_l,uu =R {Auuemaw } ) (1)

where R denotes the real part, A is the “amplitude” tensor and « is a null four-vector which satisfies

kok® = 0. In such a solution, the plane wave donated by equation travels in the spatial direction

k = (Ko, Ky, k) /K", with frequency w = k0 = (/ﬁjﬁj)l/ ®. Determine the conditions such that the
amplitude tensor A has only two linearly independent components, corresponding to the two states of

polarisation of the gravitational waves.

Solution 1

A, has at most 10 independent components. The solution to the linearised field equations [ f_LW =0
is given by equation . Inserting this solution back into the linearised field equations yields:

Dilw, = no‘ﬁ(’)aagﬁw
naﬁﬁa (iliﬁhuy)
= —naﬁfﬁaﬁﬁﬁuy

— (Kak®) b = 0, (2)

and thus we obtain the condition rex® = 0. Defining * = (w, k%) and ko = (—w, %) we then

0

immediately obtain w = k" = (kK )1/ 2, Next, imposing the Lorentz (also know as de Donder) gauge

h’“f u= 0 we obtain:

aﬂ (A;weina:p“) — Z'A“”K;Nem“xa
= i(k,AM) e = (), (3)
from which we obtain the condition:
Kk A" =0, (4)
i.e. the wave vector is orthogonal to A*”. This condition constitutes a set of 4 algebraic equations and

thus the number of degrees of freedom of A, are reduced from 10 to 6. So far, whilst we have imposed

1



the Lorentz gauge, we still have some remaining co-ordinate freedom. If we consider a co-ordinate
transform of the form:

o = ot g gt (5)
then 2/ = 0 if J&* = 0, which is also a wave equation. This has the solution
&= Bue™" (6)

where &, is the wave vector and B, are constant coefficients. The remaining co-ordinate freedom allows
us to transform from A, — A, such that:

o A, =0 (wave amplitude transverse to its propagation direction)
mo_
o AM =0 (traceless)

The choice of gauge sets u#A’,, = 0 for constant and timelike u*. The choice of Lorentz frame fixes
uf to point along the time axis. Starting from the metric perturbation:

2
G = Ny + Py + O (] (7)
in the new co-ordinate system we obtain:
g;/w = N + h,ul/ - g,u,u - fu,u ) (8)
from which we immediately relate the metric perturbations between the two co-ordinate systems as:
h;w =huw — & — &y - (9)

Contracting both sides of this equation with n** gives:

Wo= h-gh—¢,

= h—2¢% . (10)
Now consider the trace-reversed part of A, namely E:W, which may be simplified as follows:
1
h;“j = hwj — Enul/h/
1
= h;w - gu,u - gu,u - 577;11/ (h - 25021)
]' (0%
= h;w - 577,Lwh - gu,v - gu,u + nuvg a
= l_l;w - fu,v - gu,u + N gaa . (11)

Substituting our solution h,, = A" for the field equations and our solution &, = B,e" " for
the transformation between frames into equation yields:

A=A, —ik,B, —ik,B, + in,Kk.B" . 12
my w w w Um

We may now use the above equation to determine the components of B in terms of A,,. Imposing the
traceless condition implies contracting equation ((12)) with n*¥, yielding:

A’“M = A" —ik,B" —ir,B" + 4ik, B”
AP+ 2k, B = 0, (13)
which gives the condition: .
i
kB! = §A“M ) (14)

We next impose the transverse condition. Let us consider the temporal and spatial parts separately.



e For v = (0 we obtain:
A60 = AOO — QiKQBQ - il{aBa =0. (15)

However, we have previously derived equation ([14)) which upon substitution and simplification
gives the temporal component of B as:

7 1
By = ——— (Agy + =A% ) . 1
0 250( 00+t 3 a) (16)

e For v = 5 we obtain:

/ — ¢ — )  — ) .
Ay = Aoy —ikoBj —iK;By
K

1
= AOj - iliij - (AO(] + §Aaa> . (17)

J
2%0

From this we can solve for B;, which upon simplification yields:

1 1
Bj = 2—/13 |:—2/<L0A0’j + /ij (A(]O —+ §Aaa):| . (18)

We now have the four constant coefficients for B,. We know that equations and satisfy
the transverse condition and therefore A7, <+ A,,. The traceless condition implies 1 condition on the
number of independent components of the amplitude tensor. For v = 0 the transverse condition implies
Kk A" = 0 which is redundant as we have already considered this. As such Ap; (from the transverse
condition) yields 3 conditions for A, (and therefore A,,). Thus we conclude that the TT gauge gives
us a further 4 constraints and so the number of linearly independent components of A, is reduced
from 6 to 2. Therefore the gravitational wave only has 2 independent states of polarisation, as required.

As an example, consider a gravitational wave travelling in the positive z-direction, where k* =
(w,0,0,K%) = (w,0,0,w). For such a null vector the conditions k*A,, = 0 and Ay, = 0 imply that
Az, = 0 also. Thus the only non-zero components are Ay, As, Ao and Asy. However, using the
traceless condition A* = (0 we also obtain Ayy = —Ajy;. Finally, we know that by symmetry Ay = Ay
and thus we may write the amplitude tensor for such a gravitational wave as:

0 0 0 0
. 0 All A12 0
Aw=o Ay —Ay 0] 13)

0 0 0 O

which only possesses 2 linearly independent components. It is important to note the that in the T'T
gauge we have bl = bl
Exercise 2

The gauge satisfying the requirement of the first exercise is also refereed to as the TT (or transverse-
traceless) gauge. Compute the non-zero components of the Riemann tensor in this gauge.



Solution 2

Recall from Exercise 1 that we defined the transformation z* = x* 4 &*. From the consideration
of nearby geodesics/particles separated by an infinitesimal distance £* (where ||£#|| < 1) one may
calculate the geodesic deviation equation:

D3¢r
S = R, gulue” (20)
Let us calculate the RHS of equation to first order in h,,,. Assuming neighbouring geodesics/particles
vary slowly, we may express the four-velocity as a unit vector in the time direction plus corrections of
O (h,,) and higher. Since the Riemann tensor is already first order in h,,, corrections to u” can be
ignored and we may set u” = (1,0,0,0). With this the non-zero components of the geodesic deviation
equation are found as
D2¢r
D7'2 = RMQQ/B 56 . (21)
Since Rfy; # 0 this implies that R,p # 0 also. From the symmetries of the Riemann curvature
tensor we obtain:

RuOOﬁ = RO#OB = _R,u()ﬁo = _RO,uOB 5 (22>

which are the only non-zero components. Thus there is only one independent component to the
Riemann curvature tensor. We may write the expression for the Riemann curvature tensor as:

R (23)

Ruoos = 5 (hyp,00 + hoous — huo,0s — igo,ou

DN | —

where the superscript TT denotes evaluation of that quantity in the TT gauge. However, we know
that h,o = 0 in the TT gauge and so the last three terms in equation (23| vanish, yielding:

1-
Ryu00p = §hEﬂT,OO : (24)

From the plane wave solution given in equation we obtain:

BEEOO = _”OHOBZE
R 2
and therefore: L
Ruoos = —zw’hly (26)

2

Finally, in the TT gauge, and given our solution for h}J ), we may assume A5 oc e=" and therefore:

1 —iw
R,u,OOﬂ ~ —§w2e t . (27)



