
General Relativity: Solutions to exercises in
Lecture I

January 22, 2018

Exercise 1

Consider a binary system of gravitating objects of masses M and m.

• First consider the case in which m � M and where the small-mass object is in quasi-circular
orbit around the more massive object. Draw the trajectory in two-space and the worldline in a
1 + 1- and in a 2 + 1-dimensional spacetime [Hint: use a co-ordinate system centred in M ].

• Now let m = M and the binary be in circular orbit around the Newtonian centre of mass of the
system. Draw the trajectory in two-space and the worldline in a 1 + 1- and in a 2 + 1-dimensional
spacetime [Hint: use a co-ordinate system centred in the Newtonian centre of mass ].

Solution 1

Figure 1: Trajectories in two-space for the cases m�M (left) and m = M (right).
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Figure 2: Worldline in 1 + 1-dimensional spacetime for the case m � M in polar co-ordinates (left
panel) and Cartesian co-ordinates (middle panel), and for the case m = M in Cartesian co-ordinates
(right panel).

Figure 3: Worldline in 2 + 1-dimensional spacetime for the case m�M (left) and m = M (right).
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Exercise 2

Consider a two-dimensional space and cover it with two co-ordinate maps: a Cartesian map where
{xµ} = (x, y) and a polar map where {xµ′} = (r, θ).

• Find the co-ordinate transformation f : xµ → xµ
′

• Find the inverse co-ordinate transformation f −1: xµ
′ → xµ

• Find the components of the transformation matrix Λµ′
µ and its determinant J ′ :=

∣∣∂xµ′/∂xµ∣∣
• Find the components of the inverse transformation matrix Λµ

µ′ and its determinant J :=
∣∣∂xµ/∂xµ′∣∣

• Show that Λµ′
µ Λµ

ν′ = δµ
′

ν′ and that J J ′ = 1

Solution 2

The co-ordinate transformation is given by:

f :

{
r = (x2 + y2)

1/2

θ = arctan (y/x)
(1)

The inverse co-ordinate transformation is given by:

f −1 :

{
x = r cos θ
y = r sin θ

(2)

The transformation matrix is given by:

Λµ′

µ =
∂xµ

′

∂xµ

=

(
∂r/∂x ∂r/∂y

∂θ/∂x ∂θ/∂y

)

=

(
x (x2 + y2)

−1/2
y (x2 + y2)

−1/2

−y (x2 + y2)
−1

x (x2 + y2)
−1

)
(3)

≡

 cos θ sin θ

−1

r
sin θ

1

r
cos θ

 , (4)

and its determinant is given by:

J ′ =
∣∣∂xµ′/∂xµ∣∣

=
x2

(x2 + y2)3/2
+

y2

(x2 + y2)3/2

=
(
x2 + y2

)−1/2
, (5)
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or alternatively, using equation (4), is given by:

J ′ =
cos2 θ

r
+

sin2 θ

r

=
1

r
. (6)

It is trivial to confirm that both expressions for J ′ are equivalent.

The inverse transformation matrix is given by:

Λµ
µ′ =

∂xµ

∂xµ′

=

(
∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ

)

=

(
cos θ −r sin θ

sin θ r cos θ

)
(7)

≡

(
x (x2 + y2)

−1/2 −y

y (x2 + y2)
−1

x

)
, (8)

and its determinant is given by:

J =
∣∣∂xµ/∂xµ′∣∣

= r cos2 θ + r sin2 θ

= r , (9)

or alternatively, using equation (8), is given by

J =
x2

(x2 + y2)1/2
+

y2

(x2 + y2)1/2

=
(
x2 + y2

)1/2
. (10)

It is again trivial to confirm that both expressions for J are equivalent.

Matrix multiplication of equations (3) and (8) or equations (4) and (7) yields the identity matrix,

confirming the result Λµ′
µ Λµ

ν′ = δµ
′

ν′ . It is also straightforward to confirm that J J ′ = 1 in both
co-ordinate systems.

Exercise 3

Consider a three-dimensional space and cover it with two co-ordinate maps: a Cartesian one where
{xµ} = (x, y, z) and a polar one where {xµ′} = (r, θ, φ). Address all of the questions in Exercise 2.
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Solution 3

The co-ordinate transformation is given by:

f :


r = (x2 + y2 + z2)

1/2

θ = arccos
[
z (x2 + y2 + z2)

−1/2
]

φ = arctan (y/x)

(11)

The inverse co-ordinate transformation is given by:

f −1 :


x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

(12)

The transformation matrix is given by:

Λµ′

µ =
∂xµ

′

∂xµ

=

∂r/∂x ∂r/∂y ∂r/∂z

∂θ/∂x ∂θ/∂y ∂θ/∂z

∂φ/∂x ∂φ/∂y ∂φ/∂z



=


x (x2 + y2 + z2)

−1/2
y (x2 + y2 + z2)

−1/2
z (x2 + y2 + z2)

−1/2

xz

(x2 + y2)1/2 (x2 + y2 + z2)

yz

(x2 + y2)1/2 (x2 + y2 + z2)
− (x2 + y2)

1/2

x2 + y2 + z2

y (x2 + y2)
−1

x (x2 + y2)
−1

0

 (13)

≡


sin θ cosφ sin θ sinφ cos θ

1

r
cos θ cosφ

1

r
cos θ sinφ −1

r
sin θ

sinφ

r sin θ

cosφ

r sin θ
0

 , (14)

whereby, upon simplification, its determinant may be found as:

J ′ =
∣∣∂xµ′/∂xµ∣∣

=
(
x2 + y2

)−1/2 (
x2 + y2 + z2

)−1/2
, (15)

or alternatively, using equation (14), is given by:

J ′ =
1

r2 sin θ
. (16)

It is once more trivial to confirm that both expressions for J ′ are equivalent.
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The inverse transformation matrix is given by:

Λµ
µ′ =

∂xµ

∂xµ′

=

∂x/∂r ∂x/∂θ ∂x/∂φ

∂y/∂r ∂y/∂θ ∂y/∂φ

∂z/∂r ∂z/∂θ ∂z/∂φ


=

sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

 (17)

≡


x (x2 + y2 + z2)

−1/2
xz (x2 + y2)

−1/2 −y
y (x2 + y2 + z2)

−1/2
yz (x2 + y2)

−1/2
x

z (x2 + y2 + z2)
−1/2 − (x2 + y2)

1/2
0

 , (18)

whereby, upon simplification, its determinant may be found as:

J = r2 sin θ , (19)

or alternatively, using equation (18), is given by:

J =
(
x2 + y2

)1/2 (
x2 + y2 + z2

)1/2
. (20)

As before, it is again trivial to confirm that both expressions for J are equivalent.

As in Exercise 2, Matrix multiplication of equations (13) and (18) or equations (14) and (17) yields

the identity matrix, confirming the result Λµ′
µ Λµ

ν′ = δµ
′

ν′ . It is also straightforward to confirm that
J J ′ = 1 in both co-ordinate systems.
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General Relativity: Solutions to exercises in
Lecture II

January 22, 2018

Exercise 1

Consider two co-ordinate systems in a two dimensional space {xµ} = (x, y) and {xµ′} = (r, θ) which
are related through the well-known co-ordinate transformation

f :

{
r = (x2 + y2)

1/2

θ = arctan (y/x)

and its inverse

f −1 :

{
x = r cos θ
y = r sin θ

Discuss the differences between the transformation matrix employed to transform a covector in this
space (

d̃x
)
µ

= Λµ′

µ

(
d̃x
)
µ′
, (1)

and the one employed in the co-ordinate transformation

xµ
′
= Λµ′

µ x
µ . (2)

Solution 1

The matrix involved in the transformation of the gradient
(

d̃x
)
µ

= Λµ′
µ

(
d̃x
)
µ′

is different from the

matrix used in the transformation xµ
′
= Λµ′

µ x
µ. The two matrices, although written identically, are in

fact transposes of each other.

To illustrate this, consider the co-ordinate systems {xµ} = (x, y) and {xµ′} = (r, θ). It follows that
x1 = x, x2 = y; x1

′
= r, x2

′
= θ. One may now calculate the transformation between co-ordinate

systems as:

x1
′

= r = Λ1′

µ x
µ

= Λ1′

1 x
1 + Λ2′

2 x
2

=
∂x1

′

∂x1
x1 +

∂x1
′

∂x2
x2

=
∂r

∂x
x+

∂r

∂y
y , (3)
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and similarly x2
′
= (∂θ/∂x)x+ (∂θ/∂y)y. We may now write the transformation matrix as:

Λµ′

µ =

(
∂r/∂x ∂r/∂y

∂θ/∂x ∂θ/∂y

)
. (4)

On the other hand, for
(

d̃x
)
µ

= Λµ′
µ

(
d̃x
)
µ′

, consider the following explicit transformation:

(
d̃x
)
1

= Λµ′

1

(
d̃x
)
µ′

= Λ1′

1

(
d̃x
)
1′

+ Λ2′

1

(
d̃x
)
2′

=
∂r

∂x

(
d̃x
)
1′

+
∂θ

∂x

(
d̃x
)
2′
. (5)

Similarly, one finds
(

d̃x
)
2

= (∂r/∂y)
(

d̃x
)
1′

+ (∂θ/∂y)
(

d̃x
)
2′

. The transformation matrix may now

be written as:

Λµ′

µ =

(
∂r/∂x ∂θ/∂x

∂r/∂y ∂θ/∂y

)
(6)

= χµ
′

µ . (7)

Clearly
(
χµ

′
µ

)T
= Λµ′

µ from equation (4), i.e. the transformation matrices are transposes of each other,
as required.

Exercise 2

Consider two co-ordinate systems in a four-dimensional spacetime xµ = (t, x, y, z) and xµ
′
= (u, v, y, z)

that are related through the co-ordinate transformation

f :

{
u = t− x
v = t+ x

and its inverse

f −1 :

{
t = 1

2
(v + u)

x = 1
2

(v − u)

• Compute the matrices employed in the transformations

xµ
′
= Λµ′

µ x
µ xµ = Λµ

µ′ x
µ′ . (8)

• Consider a four-vector with components Uµ = (1, 0, 0, 0)T in the co-ordinate system xµ and
compute the new components Uµ′ in the co-ordinate system xµ

′
.

• Repeat the calculation for the new vector V µ = (−1/2, 1/2, 0, 0)T. Interpret the results.
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Solution 2

For the first part of the question, computing the transformation matrices, first consider Λµ′
µ.

Λ0′

µ =
∂x0

′

∂xµ

=
∂u

∂xµ
, (9)

from which one obtains the following non-zero components:

Λ0′

0 =
∂u

∂t
= 1 , (10)

Λ0′

1 =
∂u

∂x
= −1 . (11)

Similarly,

Λ1′

µ =
∂x1

′

∂xµ

=
∂v

∂xµ
, (12)

from which one obtains the following non-zero components:

Λ1′

0 =
∂v

∂t
= 1 , (13)

Λ1′

1 =
∂v

∂x
= 1 . (14)

Finally, one may also show that the remaining non-zero components of Λµ′
µ are

Λ2′

2 = 1 , (15)

Λ3′

3 = 1 . (16)

The transformation matrix may now be written as

Λµ′

µ =


1 −1 0 0

1 1 0 0

0 0 1 0

0 0 0 1

 . (17)

For the inverse transformation matrix we follow the same procedure, from which the inverse transfor-
mation matrix is found as

Λµ
µ′ =


1/2 1/2 0 0

−1/2 1/2 0 0

0 0 1 0

0 0 0 1

 . (18)
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The second part of the question asks to calculate Uµ in the new co-ordinate system, i.e. Uµ′ . Whilst
it is obvious that one can do this through matrix multiplication, consider instead the following:

Uµ′ = Λµ′

µ U
µ

= Λµ′

0 U
0

= Λµ′

0 , (19)

where the fact that the only non-zero component of Uµ is U0 has been used. One can then read directly
from equation (17) the solution as

Uµ = (1, 1, 0, 0)T . (20)

For the third and final part of this question one can again apply matrix multiplication to obtain the
result, or consider the basis components as follows:

V µ′ = Λµ′

µ V
µ

= Λµ′

0 V
0 + Λµ′

1 V
1 . (21)

Considering this term by term yields

V 0′ = Λ0′

0 V
0 + Λ0′

1 V
1

= (1).(−1/2) + (−1).(1/2)

= −1 , (22)

and

V 1′ = Λ1′

0 V
0 + Λ1′

1 V
1

= (1).(−1/2) + (1).(1/2)

= 0 , (23)

from which it immediately follows that

V µ′ = (−1, 0, 0, 0)T . (24)

The second part may be interpreted as follows. In {xµ} the four-vector Uµ represents a particle at
rest, since all spatial components are zero: the particle may be represented as a vertical worldline
in a 1 + 1-spacetime. However, when transforming to {xµ′} one finds that Uµ′ has two non-zero
components, implying that the particle no longer appears stationary and is moving with a constant
velocity. Represented as a worldline in a 1 + 1-spacetime (u, v) the worldline would be a line of constant
positive (and finite) gradient.

For the third part, the vector V µ has non-zero spatial components and so has a velocity of −1 in the
x-direction. Represented as a worldline in a 1 + 1-spacetime (t, x) it would be represented by a line of
constant, finite and non-zero gradient. However, when transformed into {xµ′}, the four-vector V µ′ has
zero spatial components. So in the co-ordinate system {xµ′} the four-vector V µ appears stationary.
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Exercise 3

Consider a 1 + 1 representation of the sub-spaces with two co-ordinate systems (t, x) and (u, v).

• Draw in the two spacetimes the worldline of a particle with velocity ẋ := dx/dt = 0.

• Draw in the two spacetimes the worldline of a particle with velocity ẋ := k (x = kt) with k < 1.

• Interpret the results.

Solution 3

In this question it is assumed we use the co-ordinate transformations as defined in Exercise 2.

For the first part, let us term the first particle as particle A. Since ẋA = 0 this implies xA = const. The
particle is stationary and at rest in the (t, x) co-ordinate system. In the (u, v) co-ordinate system one
may write

uA = t− xA , (25)

vA = t+ xA , (26)

from which one may conclude
uA
vA

=
t− xA
t+ xA

< 1. (27)

Since ∂uA/∂vA ' (t− xA)/(t+ xA) = (vA − 2xA)/v. Integrating this yields

u(v) = v − 2xA
v2

+ const. (28)

We may set the integration constant to zero without loss of generality. We may now plot equation
(28) for various values of xA, the case of xA = 0 corresponding to a straight line of constant gradient
1. The worldlines in both co-ordinate systems are illustrated in Figure 1 by the solid blue line.

For the second part of this question let us term the second particle as particle B. For particle B
one has ẋB = k (i.e. xB = kt), where k < 1. The particle is now moving with constant velocity k
and can be represented as a worldline of gradient k < 1 in the (t, x) co-ordinate system. In the (u, v)
co-ordinate system one may write

uB = t− kt = t(1− k) , (29)

vB = t+ kt = t(1 + k) , (30)

from which one may conclude
uB
vB

=
1− k
1 + k

. (31)

The condition that (1− k)/(1 + k) > 0 implies that |k| < 1. Considering values of k in this range, the
following condition on the gradient of the worldline may be obtained

uB
vB

=
1− k
1 + k

{
< 1 if k > 0 (Case B) ,

> 1 if k < 0 (Case B′) .

5



Figure 1: Worldliness for particles A and B in the (t, x) co-ordinate system (left) and the (u, v)
co-ordinate system (right).

The worldlines in both co-ordinate systems are illustrated in Figure 1 by the dashed orange line.

For the final part of the question, for particle A, in the (t, x) co-ordinate system it is at rest. However,
in the (u, v) co-ordinate system it is moving with constant velocity. For particle B, consider the limit
k → 1, whereby ∂x/∂t = 1 and ∂uB/∂vB = 0. In the (x, y) co-ordinate system the particle is moving
with constant velocity, but in the limit k → 1, in the (u, v) co-ordinate system this implies that the
particle appears stationary (or the (v, u) co-ordinate system depending on how one labels the axes).
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General Relativity: Solutions to exercises in
Lecture III

January 22, 2018

Exercise 1

Consider T as a contravariant tensor of rank 2 with components T µν . Under what conditions can this
tensor be cast as the product of two contravariant vectors U and V, i.e. such that T µν = UµV ν?

Solution 1

In a given basis T is represented by a matrix T µν . In these terms a necessary and sufficient condition
to enable T µν to be written as T µν = UµV ν is that all columns of the matrix T µν must be proportional
to each other (linearly dependent). As an example, consider the following matrix:

T µν =


1 2 4 8

2 4 8 16

3 6 12 24

4 8 16 32

 .

Since the columns of this matrix are proportional to one another, we may choose Uµ = (1, 2, 3, 4) and
V ν = (1, 2, 4, 8), thus satisfying T µν = UµV ν .

Let us now consider this in a co-ordinate independent (covariant) way. T µν = UµV ν if and only if
Sµ = T µνxν is in the same direction, for any given xν .

Consider the set of orthonormal basis vectors e0, e1, e2 and e3 which by definition must satisfy
eµeν = δµν . The direction of Sµ is independent of the choice of xν (by linearity) if and only if it
is independent of our basis vectors e0, e1, e2 and e3. As such we may obtain the following condition:

T µνeαν = T µα

= CαSµ ,

where Cα = (C0, C1, C2, C3) are constants. Explicitly:

T µ0 = C0Sµ ,

T µ1 = C1Sµ ,

T µ2 = C2Sµ ,

T µ3 = C3Sµ .

Thus the columns must be proportional to each other.
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Exercise 2

Consider the following equation:
T µν = Uµ + V ν .

Is T a generic tensor?

Solution 2

T is not a generic tensor. If T were a tensor then T µνAµBν would have to be a scalar. Instead, one
obtains

T µνAµBν = (Uµ + V ν)AµBν

= (UµAµ)Bν + (V νBν)Aµ

= αBν + βAµ ,

where α ≡ UµAµ and β ≡ V νBν are both scalars. It immediately follows that αBν + βAµ is not a
scalar and therefore T is not a generic tensor.

Exercise 3

Consider F as a tensor of rank 2 with covariant components Fµν and that is also antisymmetric in one
co-ordinate system, i.e. Fµν = −Fνµ.

• Show that Fµν is antisymmetric in all co-ordinate systems.

• Does the antisymmetry in the covariant indices also apply to the contravariant indices?

• If so, show that F µν is antisymmetric in all co-ordinate systems.

Solution 3

First consider the transformation of Fµν into another co-ordinate system:

Fµ′ν′ = Λµ
µ′Λ

ν
ν′Fµν

= −Λµ
µ′Λ

ν
ν′Fνµ

= −Λν
µ′Λ

µ
ν′Fµν

= −Fν′µ′ .

It immediately follows that Fµν is symmetric in all co-ordinate systems. The antisymmetry in covariant
indices indeed also applies to the contravariant indices since F is a tensor. This can be shown by
considering the following:

F µν = gµµ
′
gνν

′
Fµ′ν′

= −gµµ′
gνν

′
Fν′µ′

= −gµν′gνµ′
Fµ′ν′

= −F νµ ,

as required.
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Exercise 4

For the first part of the question, consider the antisymmetric tensor Aµν such that Aµν = −Aνµ and
the symmetric tensor Bµν such that Bµν = Bνµ. Prove the following identities:

AµνB
µν = 0 , (1)

V µνAµν =
1

2
(V µν − V νµ)Aµν , (2)

V µνBµν =
1

2
(V µν + V νµ)Bµν . (3)

Solution 4

For the first identity consider the following:

AµνB
µν = −AνµB

µν

= −AµνB
µν

= 0 ,

where we have used the antisymmetry of Aµν in the first step and relabelling dummy indices and the
symmetry of Bµν in the second step, hence the required result. For the second and third parts, recall
that a generic rank 2 tensor may be written in terms of a symmetric and antisymmetric component as
follows:

V µν =
1

2
(V µν + V νµ) +

1

2
(V µν − V νµ)

= V (µν) + V [µν] .

Now consider the action of the antisymmetric tensor Aµν on the symmetric part of V µν , i.e. V (µν):

V (µν)Aµν =
1

2
(V µνAµν + V νµAµν)

=
1

2
(V µνAµν + V µνAνµ)

=
1

2
(V µνAµν − V µνAµν)

= 0 ,

where in the first step we have relabelled dummy indices in the second term, and in the second step
we have used the antisymmetry of Aµν . In a similar fashion we may also consider the action of the
symmetric tensor Bµν on the antisymmetric part of V µν , i.e. V [µν]:

V [µν]Bµν =
1

2
(V µνBµν − V νµBµν)

=
1

2
(V µνBµν − V µνBνµ)

=
1

2
(V µνBµν − V µνBµν)

= 0 .
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We are now in a position to tackle the second and third identities. For the second identity, consider
the following:

V µνAµν = V (µν)Aµν + V [µν]Aµν

= V [µν]Aµν

=
1

2
(V µν − V νµ)Aµν ,

as required.

Finally, we consider the third identity:

V µνBµν = V (µν)Bµν + V [µν]Bµν

= V (µν)Bµν

=
1

2
(V µν + V νµ)Bµν ,

as required.
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General Relativity: Solutions to exercises in
Lecture IV

January 22, 2018

Exercise 1

Using a co-ordinate system (t, r, θ, φ), consider the metric line element given by

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (1)

where κ = −1, 0, 1.

• Show that a new co-ordinate system (t, χ, θ, φ) the line element (1) can be rewritten as

ds2 = −dt2 + a2(t)
[
dχ2 + f(χ)2

(
dθ2 + sin2 θ dφ2

)]
. (2)

• Find the form of the function f(χ) for κ = −1, 0 and 1.

• Discuss the properties of the metric in the case of κ = 0. [Hint: two metrics g and g′ are
conformally related if it is possible to express them as g = Ω g′, where Ω ≡ Ω(xµ) is a generic
function and is referred to as the conformal factor ].

Solution 1

From the invariance of the line element we may write

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
= −dt2 + a2(t)

[
dχ2 + f(χ)2

(
dθ2 + sin2 θ dφ2

)]
= ds′2 .

Letting dt = dθ = dφ = 0 we obtain the relation

dr√
1− κr2

= dχ . (3)

This expression may be integrated directly to yield χ as a function of r, yielding:

1



χ =


arcsinh r + c ,
r + c ,
arcsin r + c ,

(4)

for κ = −1, 0 and 1 respectively, and where c is a constant of integration. Note the inverse hyperbolic
function identity arcsinh r = ln |r +

√
1 + r2|, which is also a solution for κ = −1. Since f(χ) = r we

obtain the result

f(χ) =


sinhχ ,
χ ,
sin χ ,

(5)

for κ = −1, 0 and 1 respectively, and where we have assumed c = 0.

For the final part of this question, setting κ = 0 yields the line element as

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
. (6)

By factoring out the expansion factor a(t) we obtain

ds2 = a2(t)

[
− dt2

a2(t)
+ dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
. (7)

Let us define the “conformal time” t̃, where dt̃2 = dt2/a(t)2. We may now re-write the metric (7) as

ds2 = a2(t)
[
−dt̃2 + dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
(8)

= a2(t) ds2Minkowski ,

where the Minkowski line element is the line element for flat space. Thus in the case κ = 0 the metric
is conformally flat. This metric is in general known as the (Friedmann-Lemaitre) Robertson-Walker
(FL)RW metric and is widely used in cosmology to describe an expanding universe.

Exercise 2

Using a co-ordinate system (η, χ, θ, φ), consider the metric line element given by

ds2 = Ω2
[
−dη2 + dχ2 + sin2 χ

(
dθ2 + sin2 θ dφ2

)]
. (9)

Consider now a new co-ordinate system (τ, ρ, θ, φ) where

τ =
2 sin η

cosχ+ cos η
(10)

ρ =
2 sinχ

cosχ+ cos η
, (11)

and find the expression of the metric (9) in this new co-ordinate system. Discuss the properties of this
new metric.
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Solution 2

To calculate the expression for the new metric we must use the following co-ordinate transformation:

gα
′β′

= Λα′

αΛβ′

β g
αβ . (12)

We must calculate the contravariant metric components since we only have (τ, ρ) in terms of (η, χ) and
not the inverse relationship. It is much simpler to calculate the contravaraint metric components and
then calculate the matrix inverse of the contravariant metric than to define the inverse transformation.
Since our metric is diagonal we may exploit the fact that gαβ = 1/gαβ. Evaluating the non-zero
components of the transformation matrix, we obtain:

Λ0′

0 =
∂τ

∂η

=
2(1 + cos η cosχ)

(cosχ+ cos η)2
(13)

=
∂ρ

∂χ

= Λ1′

1 ,

Λ1′

0 =
∂ρ

∂η

=
2 sinχ sin η

(cosχ+ cos η)2
(14)

=
∂τ

∂χ

= Λ0′

1 ,

and
Λ2′

2 = Λ3′

3 = 1 . (15)

Note that the transformation matrix is diagonal. The contravariant metric may now be calculated
coefficient by coefficient, yielding

g0
′0′ =

(
Λ0′

0

)2
g00 +

(
Λ0′

1

)2
g11

= − 1

Ω2

[(
Λ0′

0

)2
−
(

Λ0′

1

)2]
= − 1

Ω2

4

(cosχ+ cos η)2
, (16)

g1
′1′ =

(
Λ1′

0

)2
g00 +

(
Λ1′

1

)2
g11

=
1

Ω2

[(
Λ1′

1

)2
−
(

Λ1′

0

)2]
=

1

Ω2

[(
Λ0′

0

)2
−
(

Λ0′

1

)2]
= −g0′0′ , (17)
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g2
′2′ =

1

Ω2 sin2 χ

= g22

=
4

Ω2 (cosχ+ cos η)2 ρ2

= − 1

ρ2
g0

′0′ , (18)

and

g3
′3′ =

1

Ω2 sin2 θ sin2 χ

= g33

=
1

sin2 θ
g2

′2′

= − 1

ρ2 sin2 θ
g0

′0′ . (19)

Thus we may write the contravariant metric components in the new co-ordinate system as

gα
′β′

=
1

Ω2

4

(cosχ+ cos η)2


−1 0 0 0

0 1 0 0

0 0 (ρ2)
−1

0

0 0 0
(
ρ2 sin2 θ

)−1

 . (20)

Let us now define a new conformal factor

Ω̃2 ≡ Ω2 (cosχ+ cos η)2

4
, (21)

which immediately enables us to write the covariant components of our metric tensor in the new
co-ordinate system as

gα′β′ = Ω̃2


−1 0 0 0

0 1 0 0

0 0 ρ2 0

0 0 0 ρ2 sin2 θ

 . (22)

We may now write our metric in the new co-ordinate system as follows

ds2 = Ω̃2
(
−dτ 2 + dρ2 + ρ2dθ2 + ρ2 sin2 θ dφ2

)
. (23)

As can be seen in the above expression, the new metric is conformally flat.
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Exercise 3

Given the four-vector u such that uαuα = −1 and the tensor hµν ≡ gµν + uµuν , prove the following
identities

hµνu
µ = 0 , hµνh

λ
µ = hλν , hµµ = 3 . (24)

Solution 3

For the first identity, consider the following

hµνu
µ = gµνu

µ + uµuνu
µ

= uν + uν (uµu
µ)

= uν − uν
= 0 . (25)

For the second identity, we must first derive an expression for hµν as follows

hµν = gµαhαν

= δµν + uµuν . (26)

Using this we may write the following

hµνh
λ
µ = (δµν + uµuν)

(
δλµ + uλuµ

)
= δµνδ

λ
µ + δµνu

λuµ + δλµu
µuν + uµuνu

λuµ

= δλν + uλuν + uλuν + uλuν (uµuµ)

= δλν + uλuν

= hλν . (27)

For the third and final identity, consider the following

hµµ = gµνhνµ

= gµνgµν + gµνuµuν

= δµµ + uµuµ

= 4− 1

= 3 . (28)

Note: the tensor hµν defines a projection onto a hypersurface orthogonal to uµ (i.e. hµνu
µuν = 0).

For any non-null vector uµ (i.e. uµuµ 6= 0), one may define the projection operator orthogonal to uµ as

Pu ≡ hµν

= gµν −
uµuν
uµuµ

. (29)
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Exercise 4

Consider the following antisymmetric tensor

Fαβ = −2E[αuβ] + ε γδ
αβ Hγ uδ . (30)

Express the vectors E and H in terms of the tensor F. [Hint: contract Fαβ with uβ & εαβγδ respectively.]

Solution 4

First, let us write the expression for the antisymmetric part of Eαuβ out in full, which reads as

E[αuβ] =
1

2
(Eαuβ − Eβuα) . (31)

We may then substitute this expression into equation (30), yielding

Fαβ = −Eαuβ + Eβuα + ε γδ
αβ Hγ uδ . (32)

Let us work with the above expression for the remainder of the question. Contracting Fαβ with uβ

yields

Fαβu
β = −Eαuβuβ + Eβuαu

β + ε γδ
αβ Hγ uδu

β

= Eα + Eβuαu
β + ε γδ

αβ Hγ uδu
β . (33)

Before proceeding further, let us turn our attention to the last term in equation (33). The Levi-Civita
tensor may be re-written in a fully contravariant form as

ε γδ
αβ = gαµ gβν ε

µνγδ , (34)

which simplifies the third term in equation (33) as follows

ε γδ
αβ Hγ uδu

β = gαµ gβν ε
µνγδuδu

βHγ

= gαµ ε
µνγδuδuν Hγ (lower index with gβν)

= gαµ ε
µδγνuνuδHγ (δ ↔ ν as dummy indices)

= −gαµ εµνγδuνuδHγ (permute δ ↔ ν in εµδγν)

= −gαµ εµνγδuδuν Hγ (compare with second line)

= 0 . (35)

We thus obtain

Fαβu
β = Eα + Eβuαu

β

= hβαEβ , (36)

as required. This may also be written as

Fαβu
β = hαβ E

β . (37)
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For the second part of the question, first recall the definition of the dual of a tensor

F ∗γδ =
1

2
Fαβ ε

αβγδ . (38)

Contracting Fαβ with εαβγδ yields

Fαβε
αβγδ = 2F ∗γδ

= −Eαuβ εαβγδ + Eβuα ε
αβγδ + ε γδ

αβ Hγ uδ ε
αβγδ . (39)

Let us attack the third term in the above expression by employing the identity we derived in equation
(34) as

ε γδ
αβ = gµγgνδεαβµν . (40)

With this expression we may re-write the third term as

ε γδ
αβ Hγ uδ ε

αβγδ = gµγgνδHγ uδ εαβµνε
αβγδ

= Hµ uν εαβµνε
αβγδ . (41)

We may then expand the contraction over the Levi-Civita tensors as

εαβµνε
αβγδ = −2! δγδµν

= −2

∣∣∣∣∣δ
γ
µ δγν

δδµ δδν

∣∣∣∣∣
= 2

(
δγν δ

δ
µ − δγµ δδν

)
, (42)

from which we may immediately simplify equation (41), yielding

Hµ uν εαβµνε
αβγδ = 2Hµ uν

(
δγν δ

δ
µ − δγµ δδν

)
= 2

(
Hδuγ −Hγuδ

)
(43)

We may now re-write equation (39) as

2F ∗γδ = −Eαuβ εαβγδ + Eβuα ε
αβγδ + 2

(
Hδuγ −Hγuδ

)
. (44)

Recall from equation (35) the vanishing of the contraction of the Levi-Civita tensor over two indices
with two 4-vectors. This suggests to us that contracting equation (44) with uδ will allow us to eliminate
the first two terms in (44). With this knowledge in mind, contracting with uδ yields

2F ∗γδuδ = −Eαuβuδ εαβγδ + Eβuαuδ ε
αβγδ + 2

(
Hδuγuδ −Hγuδuδ

)
= 2

(
Hδuγuδ −Hγuδuδ

)
, (45)

from which it immediately follows that

F ∗γδuδ = Hδuγuδ −Hγuδuδ

= Hγ +Hδuγuδ . (46)
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As before, the above expressions may be written more succinctly in terms of the projection tensor as

F ∗γδuδ = hγδH
δ

= hγδHδ . (47)

For a physical interpretation consider an orthonormal comoving frame with uµ = (1, 0, 0, 0) and uµ =
(−1, 0, 0, 0), i.e. uµuµ = −1. In this frame

Fαβu
β = Fα0

= Eα + E0uα . (48)

When α = 0

F00 = E0 − E0

= 0 . (49)

Additionally

Fi0 = Ei + E0ui

= Ei , (50)

where i = 1, 2, 3. If Fαβ is the electromagnetic field tensor then Ei is the 3-vector of the electric field.
Next consider the dual tensor

F ∗γδuδ = −F ∗γ0

= Hγ −H0uγ . (51)

When γ = 0 then

F ∗00 = −
(
H0 −H0

)
= 0 . (52)

Additionally

F ∗i0 = −(H i −H0ui)

= −H i , (53)

where again i = 1, 2, 3. H i can be interpreted as the 3-vector of the magnetic field.
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General Relativity: Solutions to exercises in
Lecture V

January 22, 2018

Exercise 1

Let F be a rank-2 antisymmetric tensor, G a rank-2 symmetric tensor and X and rank-3 antisymmetric
tensor. Provide explicit expressions for the following tensors: Fµν , F[µν], F(µν), G[µν], G(µν), X[αβγ],
X(αβγ), X[αβ]γ, X(αβ)γ, X[αβ](γ) and X(αβ)[γ].

Solution 1

• Fµν = −Fνµ

• F[µν] = 1
2

(Fµν − Fνµ) = 1
2

(Fµν + Fµν) = Fµν

• F(µν) = 1
2

(Fµν + Fνµ) = 1
2

(Fµν − Fµν) = 0

• G[µν] = 0 (the antisymmetric part of a totally symmetric tensor must be zero)

• G(µν) = Gµν

• X[αβγ] = 1
3!

(Xαβγ −Xβαγ +Xγαβ −Xαγβ +Xβγα −Xγβα) = 1
6

(2Xαβγ + 2Xγαβ + 2Xβγα)

= 1
3

(Xαβγ +Xγαβ +Xβγα)

• X(αβγ) = 1
3!

(Xαβγ +Xβαγ +Xγαβ +Xαγβ +Xβγα +Xγβα)

= 1
3!

(Xαβγ −Xαβγ +Xγαβ −Xγαβ +Xβγα −Xβγα) = 0

• X[αβ]γ = 1
2

(Xαβγ −Xβαγ) = Xαβγ

• X(αβ)γ = 1
2

(Xαβγ +Xβαγ) = 0

• X[αβ](γ) = X[αβ]γ = Xαβγ

• X(αβ)[γ] = X(αβ)γ = 0

1



Exercise 2

Prove the following identities:

• X((α1 α2...αn)) = X(α1 α2...αn)

• X[[α1 α2...αn]] = X[α1 α2...αn]

• X(α1...[αl αm]...αn) = 0

• X[α1...[αl αm]...αn] = X[α1...αl αm...αn]

Solution 2

• If Yα1α2...αn is a totally symmetric tensor then we may write

Yαπ1απ2 ...απn = Yα1α2...αn , (1)

where πi denotes permutation over the index i. We may thus write the symmetric part of Y as

Y(α1α2...αn) =
1

n!

∑
Yαπ1απ2 ...απn

= Yα1α2...αn . (2)

Now, letting X(α1α2...αn) = Yα1α2...αn we may write

Y(α1α2...αn) = X((α1α2...αn))

= X(α1α2...αn) , (3)

as required.

• Similarly to the previous question, if Yα1α2...αn is a totally antisymmetric tensor then we may
write

(−1)πYαπ1απ2 ...απn = Yα1α2...αn , (4)

We may thus write the antisymmetric part of Y as

Y[α1α2...αn] =
1

n!

∑
(−1)π Yαπ1απ2 ...απn

= Yα1α2...αn . (5)

Now, letting X[α1α2...αn] = Yα1α2...αn we may write

Y[α1α2...αn] = X[[α1α2...αn]]

= X[α1α2...αn] , (6)

as required.
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• By symmetry (outer round brackets) we have

X(α1...[αlαm]...αn) = X(α1...[αmαl]...αn) , (7)

but by antisymmetry (inner square brackets) we have

X(α1...[αlαm]...αn) = −X(α1...[αmαl]...αn) , (8)

and thus we may conclude that
X(α1...[αlαm]...αn) = 0 , (9)

as required.

• First consider

Xα1...[αlαm]...αn =
1

2
(Xα1...αlαm...αn −Xα1...αmαl...αn) . (10)

Now take the full antisymmetric part of this

X[α1...[αlαm]...αn] =
1

2n!

∑
(−1)π

(
Xαπ1 ...απlαπm ...απn

−Xαπ1 ...απmαπl ...απn

)
=

1

n!

∑
(−1)πXαπ1 ...απlαπm ...απn

= X[α1...αlαm...αn] , (11)

where we have used the fact that Xαπ1 ...απmαπl ...απn
= −Xαπ1 ...απlαπm ...απn

, as required.

Exercise 3

Let F be a rank-2 antisymmetric tensor with components F µν . From F construct another rank-2 tensor
antisymmetric tensor ∗F such that

∗F :=
1

2
εαβµνFαβ eµ ⊗ eν . (12)

The tensor ∗F is usually referred to as the dual of F. Show that the following is true

∗ (∗F) = −F . (13)

Solution 3

We may write the dual of F in contravariant index form as

∗F µν =
1

2
εαβµνFαβ . (14)

Accordingly, the covariant form may be written, using the relation Fµν = gµγgνδF
γδ, as

∗Fµν =
1

2
gµγgνδε

αβγδFαβ

=
1

2
εαβµνFαβ

=
1

2
gαγgβδεγδµνFαβ

=
1

2
εγδµνF

γδ . (15)
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We may now write

∗ (∗F µν) =
1

2
εαβµν (∗Fαβ)

=
1

4
εαβµνεγδαβF

γδ

=
1

4

(
−2! δµνγδ

)
F γδ

= −1

2

(
δµγ δ

ν
δ − δµδ δ

ν
γ

)
F γδ

= −1

2
(F µν − F νµ)

= −F µν . (16)

Thus we obtain
∗ (∗F) = −F , (17)

as required.

Exercise 4

Let V be a rank-3 tensor with components V αβγ and define

(∗V )αβγ := Vµε
µαβγ . (18)

Show that the following is true

V µVµ = − 1

3!
(∗V )αβγ (∗V )αβγ . (19)

Solution 4

In addition to equation (18), for fully covariant V we may write

(∗V )αβγ = V νεναβγ . (20)

From this we may immediately calculate the contraction as

(∗V )αβγ (∗V )αβγ = V νVµε
µαβγεναβγ

= V νVµ (−3! δµν )

= −3!V µVµ , (21)

and hence we obtain

V µVµ = − 1

3!
(∗V )αβγ (∗V )αβγ , (22)

as required.
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General Relativity: Solutions to exercises in
Lecture VI

January 29, 2018

Exercise 1

Define the antisymmetric tensor F as Fµν = ∂µAν − ∂νAµ. Use the results from the previous exercises
to show that

Fµν := 2 ∂[µAν] . (1)

Show that such a definition implies that

Fαβ,ν + Fβν,α + Fνα,β = 0 . (2)

Solution 1

For the first part we may simply write

Fµν = 2

[
1

2
(∂µAν − ∂νAµ)

]
= 2 ∂[µAν] . (3)

For the second part of the question we must write out each of the three terms explicitly. For the first
term in equation (2) we obtain

Fαβ,ν = ∂ν (Fαβ)

= ∂ν (∂αAβ − ∂βAα)

= ∂ν∂αAβ − ∂ν∂βAα . (4)

For the second term

Fβν,α = ∂α (Fβν)

= ∂α (∂βAν − ∂νAβ)

= ∂α∂βAν − ∂α∂νAβ . (5)

Finally, for the third term

Fνα,β = ∂β (Fνα)

= ∂β (∂νAα − ∂αAν)
= ∂β∂νAα − ∂β∂αAν . (6)

Since ∂α∂βF = ∂β∂αF, summing equations (4)–(6) leads to cancellation of terms, giving the result in
equation (2), as required.
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Exercise 2

Consider a vector V with components V µ relative to a co-ordinate basis, i.e.

V = V µ∂µ = V µeµ . (7)

Define an object given by the partial derivative of the components of V, i.e.

U µ
ν := ∂νV

µ . (8)

Show that U µ
ν is not a tensor. What are the implications of this result? What can be done to construct

a tensor out of measuring the derivative of a tensor?

Solution 2

From equation (8) we may write

Uν = ∂νV

= ∂ν (V µeµ)

= ∂νV
µeµ + V µ∂νeµ . (9)

For the second term in the above expression we may think of it as a vector written in terms of some
basis vectors. Let us re-write this as ∂νeµ = Γαµνeα. We may now write equation (9) as

Uν = ∂νV
µeµ + V µΓαµνeα

= ∂νV
µeµ + V αΓµανeµ (α↔ µ in the second term)

= (∂νV
µ + V αΓµαν) eµ

= (∇νV
µ) eµ , (10)

and thus we may write
U µ
ν = ∇νV

µ , (11)

where the ∇ν we have introduced is defined as the covariant derivative.

Consider the term ∂νeµ = Γαµνeα. In flat (Minkowski) spacetime, in Cartesian co-ordinates, ∂νeµ must
vanish as the eµ are all constant, and thus Γαµν must also be zero. However, in the same Minkowski
spacetime, transforming to (for example) spherical polar co-ordinates one would find the basis vector
components are not constant and are in fact functionally dependent on r and θ. As such, ∂νeµ would be
non-zero in Minkowski spacetime. Since a tensor quantity is defined independently of any co-ordinate
system, the quantity U µ

ν cannot be a tensor.

The partial derivative is not a good differential operator when spacetime is not Euclidean but by
construction the covariant derivative does define the components of a tensor.

Exercise 3

Consider a line element in three-dimensional space

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 , (12)

with a co-ordinate basis {er, eθ, eφ}.
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• Construct the corresponding orthonormal basis {er̂, eθ̂, eφ̂}

• Compute the structure coefficients Cθ
r̂θ̂

and Cθ
rθ. What is the difference between the two?

• Compute the structure coefficients Cθ
r̂φ̂

, Cφ

r̂φ̂
, Cθ

θ̂φ̂
and Cφ

θ̂φ̂
. Are there others that are non-zero?

Solution 3

Since our metric is diagonal we can immediately read of the orthonormal basis vector components as

er̂ = er , eθ̂ =
1

r
eθ , eφ̂ =

1

r sin θ
eφ , (13)

from which it is straightforward to show that er̂ · er̂ = 1, eθ̂ · eθ̂ = 1 and eφ̂ · eφ̂ = 1. To convince
ourselves this is correct, consider the transformation between the co-ordinate basis and orthonormal
basis

dxî = Λî
j dxj , (14)

where

Λî
j =

1 0 0

0 r 0

0 0 r sin θ

 . (15)

Using the co-ordinate transformation we may show that

dr̂ = dx1̂

= Λ1̂
jdx

j

= Λ1̂
1dx

1

= dr . (16)

Similarly, one may show that

dθ̂ = r dθ , (17)

dφ̂ = r sin θ dφ . (18)

Now let us write the line element in terms of the orthonormal basis components and prove equivalence

ds2 = gr̂r̂dr̂
2 + gθ̂θ̂dθ̂

2 + gφ̂φ̂dφ̂2

= dr̂2 + dθ̂2 + dφ̂2

= dr2 + r2dθ2 + r2 sin2 θ dφ2 , (19)

hence the orthonormal basis vector components are correct.

For the next part of the question recall the definition of the Lie brackets of any two basis vectors,
which may be written in terms of the same basis as

[eα, eβ] = Cγ
αβeγ , (20)
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where the components Cγ
αβ are termed the structure coefficients. By definition a set of basis vectors

with all of its structure coefficients vanishing is a co-ordinate basis. We may now write

Cγ
αβ = [eα, eβ]γ

= e ν
α ∂ν e

γ
β − e ν

β ∂ν e
γ
α . (21)

For the first structure coefficient, applying the above machinery we find

Cθ
r̂θ̂

= [er̂, eθ̂]
θ

= e ν
r̂ ∂ν e

θ
θ̂
− e ν

θ̂
∂ν e

θ
r̂

= e r
r̂ ∂r

(
1

r

)
− e θ

θ̂
∂θ�

�e θ
r̂

= − 1

r2
. (22)

As mentioned previously, Cθ
rθ = 0 since {ei} is a co-ordinate basis. For the final four requested structure

components we apply the same procedure for calculation. The results are as follows

Cθ
r̂φ̂

=
[
er̂, eφ̂

]θ
= e ν

r̂ ∂ν �
�e θ
φ̂
− e ν

φ̂
∂ν�

�e θ
r̂

= 0 , (23)

Cφ

r̂φ̂
=

[
er̂, eφ̂

]φ
= e ν

r̂ ∂ν e
φ

φ̂
− e ν

φ̂
∂ν e

φ
r̂

= e r
r̂ ∂r e

φ

φ̂
− e ν

φ̂
∂ν�

�e φ
r̂

= ∂r

(
1

r sin θ

)
= − 1

r2 sin θ
, (24)

Cθ
θ̂φ̂

=
[
eθ̂, eφ̂

]θ
= e ν

θ̂
∂ν e

θ
φ̂
− e ν

φ̂
∂ν e

θ
θ̂

= e ν
θ̂
∂ν

�
�e θ
φ̂
− e φ

φ̂
∂φ e

θ
θ̂

= − 1

r sin θ
∂φ (r)

= 0 , (25)
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and

Cφ

θ̂φ̂
=

[
eθ̂, eφ̂

]φ
= e ν

θ̂
∂ν e

φ

φ̂
− e ν

φ̂
∂ν e

φ

θ̂

= e θ
θ̂
∂θ e

φ

φ̂
− e ν

φ̂
∂ν�

�e φ

θ̂

=
1

r
∂θ

(
1

r sin θ

)
= − cos θ

r2 sin2 θ
. (26)

There are no other non-zero structure coefficients.
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General Relativity: Solutions to exercises in
Lecture VII

January 29, 2018

Exercise 1

Show that if g is the metric tensor, then its covariant derivative is zero, i.e.

∇λgµν = 0 . (1)

Solution 1

By definition ∇Aµ is a vector. As such we may write

∇λAµ = gµν (∇λA
ν) . (2)

We may also write

∇λAµ = ∇λ (gµνA
ν)

= (∇λgµν)A
ν + gµν (∇λA

ν) . (3)

Using equation (2) we may rewrite the above expression as

∇λAµ = (∇λgµν)A
ν +∇λAµ , (4)

from which it immediately follows that
∇λgµν = 0 , (5)

as required.

Exercise 2

Using the results of exercise 1, drive the following definition of the Christoffel symbols

Γαβγ =
1

2
gαδ (∂γgδβ + ∂βgδγ − ∂δgβγ) . (6)

1



Solution 2

Consider the following three expressions for the covariant derivative of the (covariant) metric tensor

∇λgµν = gµν,λ − Γαλµgαν − Γαλνgµα (= 0) , (7)

∇µgνλ = gνλ,µ − Γαµνgαλ − Γαµλgνα (= 0) , (8)

∇νgλµ = gλµ,ν − Γανλgαµ − Γανµgλα (= 0) , (9)

where we have (evenly) permuted the covariant indices, as well as having made use of the result of
exercise 1, namely that ∇λgµν = 0. We have also written partial derivatives as subscript commas for
the sake of brevity.

To prove the result, subtract the last two expressions from the first, i.e. (7) −[(8) + (9)]. This
yields

gµν,λ − gνλ,µ − gλµ,ν − Γα
λµgαν − Γα

λνgµα + Γαµνgαλ + Γα
µλgνα + Γα

νλgαµ + Γανµgλα = 0 . (10)

By the torsion-free condition (i.e. Γαµν = Γανµ) and symmetry of the metric tensor (i.e. gµν = gνµ) the
red and blue terms cancel, yielding

gµν,λ − gνλ,µ − gλµ,ν + 2 Γαµνgαλ = 0 , (11)

which upon re-arranging gives

gαλΓ
α
µν =

1

2
(gλµ,ν + gνλ,µ − gµν,λ) . (12)

Multiplying both sides by gβλ gives

δβαΓαµν =
1

2
gβλ (gλµ,ν + gνλ,µ − gµν,λ) , (13)

which immediately simplifies to

Γβµν =
1

2
gβλ (gλµ,ν + gνλ,µ − gµν,λ) . (14)

Finally, making the substitutions β → α, µ→ β, ν → γ and λ→ δ we obtain the result

Γαβγ =
1

2
gαδ (gδβ,γ + gδγ,β − gβγ,δ) , (15)

as required.

Exercise 3

Prove the following identities:

∂γgαβ = Γαβγ + Γβαγ , (16)

gαµ∂γg
µβ = −gµβ∂γgαµ , (17)

∂γg
αβ = −Γαµγg

µβ − Γβµγg
µα , (18)

(ln |g|),α = gµνgµν,α , (19)

∇µA
µ =

1

|g|1/2
∂µ
(
|g|1/2Aµ

)
in a coordinate basis. (20)
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Solution 3

• For the first part consider the action of the covariant derivative on gαβ:

∇γgαβ = gαβ,γ − Γλγαgλβ − Γλγβgαλ = 0 . (21)

Rearranging yields

gαβ,γ = Γλγαgλβ + Γλγβgαλ

= gλβΓλαγ + gαλΓ
λ
βγ

= Γβαγ + Γαβγ , (22)

as required.

• For the second part consider the following expression:(
gαµg

µβ
)
,γ

=
(
δβα
)
,γ

= 0 , (23)

which may also be expanded as(
gαµg

µβ
)
,γ

= gαµ,γg
µβ + gαµg

µβ
,γ

= 0 . (24)

Rearranging the above expression, and writing partial derivatives explicitly, we obtain

gαµ∂γg
µβ = −gµβ∂γgαµ , (25)

as required.

• For the third part, let us consider the action of the covariant derivative on the contravariant
metric tensor:

∇γg
αβ = gαβ,γ + Γαγµg

µβ + Γβγµg
αµ = 0 . (26)

Rearranging and making use of the symmetry conditions of the metric tensor and Christoffel
symbol yields

∂γg
αβ = −Γαµγg

µβ − Γβµγg
µα , (27)

as required.

• For the fourth part consider the metric tensor gαβ, which is a rank-2 tensor and specifically a
matrix. For matrices one may consider the Jacobi matrix formula:

∂

∂xα
det [gµν(x

α)] = Tr

[
adj (gαβ(xα))

∂gµν(x
α)

∂xα

]
, (28)

where the adjugate of a matrix may be written as

adj (gαβ) = det (gαβ) (gαβ)−1

= gαβdet (gαβ)

= gαβ|g| , (29)
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where we have omitted writing the dependence of the metric on co-ordinates for brevity, and
written the determinant of the metric tensor as |g|.

We may now rewrite the Jacobi identity in equation (28) in logarithmic form as

∂

∂xα
[ln det (gαβ)] =

1

det (gαβ)

∂

∂xα
[det (gαβ)]

=
1

|g|
Tr
[
gαβ|g|gµν,α

]
= Tr

[
gαβgµν,α

]
= gµνgµν,α . (30)

This may be written more succinctly as

(ln |g|),α = gµνgµν,α , (31)

as required.

• For the fifth and final part, consider the action of the covariant derivative on Aµ:

∇µA
µ = Aµ,µ + ΓµµνA

ν . (32)

Using the definition of the covariant derivative derived in exercise 2, we may write Γµµν as:

Γµµν =
1

2
gµδ (gδµ,ν + gνδ,µ − gµν,δ) . (33)

Whilst it is not immediately obvious, it can be shown that the last two terms in brackets in
equation (33) vanish. Consider the following:

gµδ (gνδ,µ − gµν,δ) = gµδ∂µgνδ − gµδ∂δgµν
= ∂δgνδ − ∂µgµν
= ∂δgδν − ∂µgµν (gνδ = gδν)

= ∂µgµν − ∂µgµν (δ is a dummy index)

= 0 . (34)

Consequently we may rewrite equation (33) as

Γµµν =
1

2
gµδgδµ,ν . (35)

In the fourth part of this exercise we showed that (ln |g|),ν = gµδgµδ,ν . Using this we may write

Γµµν =
1

2
gµδgδµ,ν

=
1

2
(ln |g|),ν

=
(
ln |g|1/2

)
,ν

=

(
|g|1/2

)
,ν

|g|1/2
(36)
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Returning to equation (32) we may now re-write the expression as

∇µA
µ = Aµ,µ +

(
|g|1/2

)
,ν

|g|1/2
Aν

= Aµ,µ +

(
|g|1/2

)
,µ

|g|1/2
Aµ (relabel dummy index)

=
1

|g|1/2
[
|g|1/2Aµ,µ +

(
|g|1/2

)
,µ
Aµ
]

=
1

|g|1/2
(
|g|1/2Aµ

)
,µ

≡ 1

|g|1/2
∂µ
(
|g|1/2Aµ

)
, (37)

as required.

Exercise 4

Optional: The covariant derivative of a contravariant vector Uµ is

∇νU
µ := ∂νU

µ + ΓµνλU
λ . (38)

Use this expression to obtain the covariant derivative of the covariant vector Uµ.

Solution 4

There are several ways one can go about proving this. Let us consider two such methods.

• Method 1

Consider the following:

∇ν (V µUµ) = V µ
;νUµ + V µUµ;ν

= V µ
,νUµ + ΓµνλV

λUµ + V µUµ;ν , (39)

where the subscript ;ν denotes the covariant differentiation with respect to xν and we have used
the definition of V µ

;ν . Since the quantity V µUµ is a scalar we may also write

∇ν (V µUµ) = ∂ν (V µUµ)

= V µ
,νUµ + V µUµ,ν . (40)

Combining the above two equations yields

V µ
,νUµ + V µUµ,ν = V µ

,νUµ + ΓµνλV
λUµ + V µUµ;ν , (41)

which simplifies to
V µUµ,ν = ΓµνλV

λUµ + V µUµ;ν , (42)
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from which we may obtain
V µUµ;ν = V µUµ,ν − ΓµνλV

λUµ . (43)

Now let us set V µ = δµβ , which gives

δµβUµ;ν = δµβUµ,ν − Γµνλδ
λ
βUµ , (44)

which simplifies to
Uβ;ν = Uβ,ν − ΓµνβUµ , (45)

where upon setting µ↔ α and then β → µ we obtain

Uµ;ν = Uµ,ν − ΓαµνUα , (46)

as required.

• Method 2

∇νUµ = ∇ν (gµαU
α)

= �����(∇νgµα) + gµα∇νU
α

= gµα
(
Uα

,ν + ΓανλU
λ
)

= gµα
(
Uα

,ν

)
+ gµαΓανλU

λ . (47)

Now consider the expression

(gµαU
α),ν = Uµ,ν

= gµα,νU
α + gµα

(
Uα

,ν

)
, (48)

which upon rearrangement yields

gµα
(
Uα

,ν

)
= Uµ,ν − gµα,νUα . (49)

Substituting equation (49) into equation (47) yields

∇νUµ = Uµ,ν − gµα,νUα + gµαΓανλU
λ . (50)

From exercise 3, part 1, recall the identity

gµα,ν = gλαΓλνµ + gµλΓ
λ
να . (51)

This enables us to rewrite the last two terms in equation (50) as:

−gµα,νUα + gµαΓανλU
λ = −gλαΓλνµU

α − gµλΓλναUα + gµαΓανλU
λ

= −gλαΓλνµ − gµλΓλναUα + gµλΓ
λ
ναU

α (α↔ λ in last term)

= −gλαΓλνµu
α

= −Γλνµuλ . (52)

We may now use the above expression to rewrite equation (50) as

∇νUµ = Uµ,ν − ΓλνµUλ , (53)

which may be rewritten as
∇νUµ := ∂νUµ − ΓλνµUλ , (54)

as required.
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General Relativity: Solutions to exercises in
Lecture VIII

January 29, 2018

Exercise 1

Consider the metric describing, in polar co-ordinates (r, θ), a Euclidean space

ds2 = dr2 + r2θ2 . (1)

• Calculate the Christoffel symbols and geodesic curves associated with this space, which are given
by the geodesic equation

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 . (2)

• Combine the two second-order differential equations describing the geodesic curves into a single
first-order differential equation for r = r(θ).

• What is the differential equation for a straight line in this space?

Solution 1

• First let us consider the components of the metric and their partial derivatives:

gµν =

(
1 0
0 r2

)
, (3)

gµν =

(
1 0
0 r−2

)
, (4)

gµν,r =

(
0 0
0 2r

)
, (5)

gµν,θ = 0 . (6)

Next, recall the definition of the Christoffel symbols:

Γαβγ =
1

2
gαδ (gδβ,γ + gγδ,β − gβγ,δ) . (7)

1



Since α can only be r or θ and the metric is diagonal, we may proceed as follows:

Γrβγ =
1

2
grr (���grβ,γ +���gγr,β − gβγ,r)

= −1

2
grrgβγ,r , (8)

Γθβγ =
1

2
gθθ (gθβ,γ + gγθ,β −���gβγ,θ)

=
1

2
gθθgθβ,γ . (9)

It immediately follows that the only non-zero Christoffel symbols are given by:

Γrθθ = −r , (10)

Γθrθ =
1

r
. (11)

Substituting these expression into the geodesic equation of motion (2) we obtain:

r̈ = rθ̇2 , (12)

θ̈ = −2

r
ṙθ̇ , (13)

where an overdot denotes differentiation with respect to the affine parameter, λ.

• For the second part of the question we may rewrite equation (13) as:

1

r2
d

dλ

(
r2θ̇
)

= 0 , (14)

which may be integrated to yield

θ̇ =
k

r2
, (15)

where k is a constant of integration. Next, starting from the line element and dividing both sides
by ds2 and taking s as affine we may write

ṙ2 + r2θ̇2 = 1 . (16)

Using the chain rule we may write equation (16) as:(
dr

dθ

dθ

dλ

)2

+ r2
(

dθ

dλ

)2

= 1 . (17)

Substituting equation (15) into equation (17) we obtain:

[
r′(θ)2 + r2

] k2
r4

= 1 , (18)

where a primed quantity denotes differentiation with respect to θ. This may be simplified to
yield

r′(θ) = ±r
√
r2

k4
− 1 . (19)
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• For the final part of the question, let us integrate equation (19), which describes geodesics in this
spacetime. Rearranging both sides of equation (19) gives:

dr

r
√

r2

k4
− 1

= ±dθ . (20)

Integrating both sides of the above equation then yields:

arctan

(√
r2

k4
− 1

)
= ± (θ + θ0) . (21)

Making use of the identity cos [arctan (f(x))] = [1 + f(x)2]
−1/2

we may take the cosine of both
sides of the above equation, yielding: √

k4

r2
= cos(θ + θ0) , (22)

which may be finally written as
r cos(θ + θ0) = k2 , (23)

which is precisely the equation of a straight line in polar co-ordinates. Thus the geodesic equations
of motion, which we derived in the first part of the question, are straight lines.

Exercise 2

Consider the metric describing the two-dimensional spacetime covered by co-ordinates (t, x) and with
metric

ds2 =
dx2 − dt2

t2
. (24)

• Compute the Christoffel symbols.

• Compute the geodesic curves of this spacetime.

Solution 2

• As in question 1, let us first start by writing down the metric components and their partial
derivatives. First consider the components of the metric and their partial derivatives:

gµν =

(
−t−2 0

0 t−2

)
, (25)

gµν =

(
−t2 0
0 t2

)
, (26)

gµν,t =

(
2t−3 0

0 −2t−3

)
, (27)

gµν,x = 0 . (28)
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Next, recall the definition of the Christoffel symbols:

Γαβγ =
1

2
gαδ (gδβ,γ + gγδ,β − gβγ,δ) . (29)

We may now write:

Γtβγ =
1

2
gtt (gtβ,γ + gγt,β − gβγ,t) , (30)

Γxβγ =
1

2
gxx (gxβ,γ + gγx,β −���gβγ,x) . (31)

For equation (30) only β = γ = t or x yields non-zero terms, and for equation (31) only β = x,
γ = t (or vice-versa) result in non-vanishing terms. It immediately follows that the only non-zero
Christoffel symbols are all identical and are given by:

Γttt = Γtxx = Γxtx = −1

t
. (32)

• For the second part of the question let us first write the geodesic equations of motion for this
spacetime. As in exercise 1, an overdot denotes differentiation with respect to the affine param-
eter. With the Christoffel symbol components we may write the geodesic equations of motion
as:

ẗ =
1

t

(
ṫ2 + ẋ2

)
, (33)

ẍ =
2

t
ṫẋ , (34)

and from the line element we may write

ẋ2 − ṫ2 = t2 . (35)

We may write equation (34) as
ẍ

ẋ
= 2

ṫ

t
, (36)

which may be rewritten as
d

dλ
(ln ẋ) =

d

dλ

(
ln t2

)
. (37)

Integrating both sides of this equation then yields

ẋ = kt2 , (38)

where k is a constant of integration. Substituting equation (38) into equation (35) yields

k2t4 − ṫ2 = t2 , (39)

which may be solved for ṫ to yield
ṫ = ±t

√
k2t2 − 1 . (40)

We may now obtain a differential equation for x as a function of t by dividing equation (38) by
equation (40), yielding

x′(t) = ± kt√
k2t2 − 1

, (41)
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Figure 1: Hyperbolic geodesics as described by equation (43) for the case x0 = 0 and k = 1. Note
that the geodesics (orange curves) are asymptotic to the lightcone (dashed black line).

which may be integrated to give

x− x0 = ±1

k

√
k2t2 − 1

= ±
√
t2 − k−2 , (42)

where x0 is a constant of integration. Finally, upon squaring both sides and rearranging we
obtain

t2

(1/k)2
− (x− x0)2

(1/k)2
= 1 , (43)

which is the equation of a hyperbola. Thus the geodesics curves in this spacetime are described
by hyperbolas. This is illustrated in Figure 1.
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Exercise 3

Given a scalar function φ ≡ φ (xµ), prove the following identity in a co-ordinate basis:

�φ := ∇µ∇µφ =
1√
−g

∂µ
(√
−g gµν∂νφ

)
. (44)

Solution 3

First, consider the following

∇µ∇µφ = (gµνφ;ν);µ
= (gµνφ,ν);µ , (45)

since φ is a scalar quantity. Recall the identity we derived in Problem Sheet 7, question 3, part 5:

Aµ;µ =
1

|g|1/2
(
|g|1/2Aµ

)
,µ
. (46)

Using this identity and substituting Aµ = gµνφ,ν , we may now write

∇µ∇µφ =
1

|g|1/2
(
|g|1/2gµνφ,ν

)
,µ
, (47)

which is the desired result, as required. Note that we use |g|1/2 and
√
−g interchangeably.

Exercise 4

Optional: Derive the geodesic equation from the definition of a curve of extremal length.

Solution 4

The Euler-Lagrange equations of motion are derived by extremising the length of a curve. For a given
metric tensor gµν the Lagrangian may be written as

L =
1

2
gµν ẋ

µẋν , (48)

where, as before, an overdot denotes differentiation with respect to the affine parameter. The Euler-
Lagrange equations are by definition written as

d

dλ

(
∂L
∂ẋα

)
=

∂L
∂xα

. (49)

Let us now derive each term. First we calculate the RHS of (49):

∂L
∂xα

=
1

2
gµν,αẋ

µẋν . (50)
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For the LHS of equation (49) first consider:

∂L
∂ẋα

=
1

2
gµν

(
∂ẋµ

∂ẋα

)
ẋν +

1

2
gµν ẋ

µ

(
∂ẋν

∂ẋα

)
=

1

2
gµνδ

µ
αẋ

ν +
1

2
gµνδ

µ
αẋ

µ

=
1

2
gαν ẋ

ν +
1

2
gµαẋ

µ

= gαµẋ
µ , (51)

where in the last step with have made use of the fact that µ and ν are dummy indices, as well as the
metric tensor being symmetric. Now we differentiate with respect to the affine parameter, yielding:

d

dλ

(
∂L
∂ẋα

)
=

d

dλ
(gαµ) ẋµ + gαµẍ

µ

= ẋβ
∂

∂xβ
(gαµ) ẋµ + gαµẍ

µ

= gαµ,βẋ
βẋµ + gαµẍ

µ . (52)

Note that the dummy indices β and µ in the first term in equation (52) enable us to expand this term
as follows:

gαµ,βẋ
βẋµ =

1

2
(gαµ,β + gαβ,µ) ẋβẋµ . (53)

Using equation (53) we may write the Euler-Lagrange equations as:

gαµẍ
µ +

1

2
(gαµ,β + gαβ,µ) ẋβẋµ =

1

2
gµν,αẋ

µẋν . (54)

Bringing all terms to the LHS and relabelling the dummy indices µ and ν in the RHS of equation (54)
as β and µ respectively, we obtain

gαµẍ
µ +

1

2
(gαµ,β + gαβ,µ − gβµ,α) ẋβẋµ = 0. (55)

Next, multiply both sides of this expression by gδα, yielding

ẍδ +
1

2
gδα (gαµ,β + gαβ,µ − gβµ,α) ẋβẋµ = 0 , (56)

where we have used the fact that gδαgαµ = δδµ. Recalling the definition of the Christoffel symbols this
expression may be written more succinctly as

ẍδ + Γδµβẋ
µẋβ = 0 . (57)

Let us now relabel the dummy indices as δ → α, µ→ β and β → γ, enabling us to rewrite (57) in the
more familiar form

ẍα + Γαβγẋ
βẋγ = 0 , (58)

which is precisely the geodesic equation, as required.
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General Relativity: Solutions to exercises in
Lecture IX

January 29, 2018

Exercise 1

Consider a torus in a two-dimensional Euclidean space described by the spherical co-ordinate system
(θ, φ). The line element of the torus is then given by

ds2 = (b+ a sinφ)2 dθ2 + a2dφ2 , (1)

where b and a denote the torus radius and the radius of its section, respectively.

Compute the Christoffel symbol components and the non-vanishing components of the (Riemann)
curvature tensor. (Hint: remember that there is only one linearly independent component of the
Riemann tensor in a spacetime of dimension 2).

Solution 1

First let us consider the components of the metric and their partial derivatives:

gµν =

(
(b+ a sinφ)2 0

0 a2

)
, (2)

gµν =

(
(b+ a sinφ)−2 0

0 a−2

)
, (3)

gµν,θ = 0 , (4)

gµν,φ =

(
2a (b+ a sinφ) cosφ 0

0 0

)
. (5)

Next, recall the definition of the Christoffel symbols:

Γαβγ =
1

2
gαδ (gδβ,γ + gγδ,β − gβγ,δ) . (6)

1



Since α can only be θ or φ and the metric is diagonal, we may proceed as follows:

Γθβγ =
1

2
gθθ (gθβ,γ + gγθ,β −���gβγ,θ)

=
1

2
gθθgθθ,φ (7)

=
a cosφ

b+ a sinφ
(8)

Γφβγ =
1

2
gφφ (���gφβ,γ +���gγφ,β − gβγ,φ)

= −1

2
gφφgθθ,φ (9)

= −(b+ a sinφ) cosφ

a
. (10)

It immediately follows that the only non-zero Christoffel symbols are given by:

Γθθφ =
a cosφ

b+ a sinφ
, (11)

Γφθθ = −(b+ a sinφ) cosφ

a
. (12)

Next, recall the definition of the Riemann tensor:

Rµ
ναβ = Γµνβ,α + ΓµραΓρνβ − Γµνα,β − ΓµρβΓρνα , (13)

which may also be written more compactly as

Rµ
ναβ =

(
Γµνβ,α + ΓµραΓρνβ

)
− (α↔ β) , (14)

where (α↔ β) denotes writing down the first term in brackets with α and β exchanged. Looking at
the first term in equation (13), we know that Γµνβ,α is non-zero only if α = φ (partial derivative is
non-zero). Next, we are free to choose (µ, ν, β) such that the Christoffel symbol is also non-zero. This
yields the choices (µ, ν, β) = (θ, θ, φ) or (φ, θ, θ). Let us take (µ, ν, β) = (θ, θ, φ), which yields

Rθ
θφφ = Γθθφ,φ + ΓθρφΓρθφ − Γθθφ,φ − ΓθρφΓρθφ

= Γθθφ,φ + ΓθθφΓθθφ +
�
�ΓθφφΓφθφ − Γθθφ,φ − ΓθθφΓθθφ −��

��ΓθφφΓφθφ

= Γθθφ,φ +
(
Γθθφ
)2 − Γθθφ,φ −

(
Γθθφ
)2

= 0 . (15)

Instead, let us now try α = θ and β = φ in equation (13). We obtain

Rµ
νθφ = ���Γµνφ,θ + ΓµρθΓ

ρ
νφ − Γµνθ,φ − ΓµρφΓρνθ . (16)

Next, let us ensure the partial derivative of the Christoffel symbol does not vanish by choosing µ = θ
and ν = φ, which yields:

Rθ
φθφ = Γθρθ�

�Γρφφ − Γθφθ,φ − ΓθρφΓρφθ

= −Γθφθ,φ − ΓθθφΓθφθ

=
a (a+ b sinφ)

(b+ a sinφ)2
− a2 cos2 φ

(b+ a sinφ)2

=
a sinφ

(b+ a sinφ)
. (17)

2



Consequently we may calculate the (only) non-vanishing component of the fully-covariant Riemann
curvature tensor as:

Rθφθφ = gθθR
θ
φθφ

= a sinφ (b+ a sinφ) . (18)

Exercise 2

Consider the two-dimensional spacetime with line element

ds2 = dv2 − v2du2 . (19)

Compute the Christoffel symbols and the non-vanishing components of the curvature tensor.

Solution 2

As in question 1, let us first start by writing down the metric components and their partial derivatives.
First consider the components of the metric and their partial derivatives:

gµν =

(
1 0
0 −v2

)
, (20)

gµν =

(
1 0
0 −v2

)
, (21)

gµν,v =

(
0 0
0 −2v

)
, (22)

gµν,u = 0 . (23)

Next, recall the definition of the Christoffel symbols:

Γαβγ =
1

2
gαδ (gδβ,γ + gγδ,β − gβγ,δ) . (24)

We may calculate the Christoffel symbols as before:

Γvβγ =
1

2
gvv (���gvβ,γ +���gγv,β − gβγ,v)

= −1

2
gvvgβγ,v

= −1

2
gvvguu,v

= −1

2
(1)(−2v)

= v , (25)
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Γuβγ =
1

2
guu (guβ,γ + gγu,β −���gβγ,u)

=
1

2
guu (guβ,γ + gγu,β)

=
1

2
guuguu,v

=
1

2

(
− 1

v2

)
(−2v)

=
1

v
. (26)

Thus we obtain the only non-zero Christoffel symbols as:

Γvuu = v , (27)

Γuuv =
1

v
. (28)

Next recall the Riemann curvature tensor as defined in equation (13). Let us first make the first term
vanish by choosing α = u, yielding

Rµ
νuβ = ���Γµνβ,u + ΓµρuΓ

ρ
νβ − Γµνu,β − ΓµρβΓρνu . (29)

Now let us expand the sum over the dummy indices ρ:

Rµ
νuβ = ΓµvuΓ

v
νβ + ΓµuuΓ

u
νβ − Γµνu,β − ΓµvβΓvνu − ΓµuβΓuνu . (30)

Next, let us focus on ensuring the Γµνu,β term is non-vanishing, which requires us to set β = v:

Rµ
νuv = ΓµvuΓ

v
νv + ΓµuuΓ

u
νv − Γµνu,v −�

�ΓµvvΓ
v
νu − ΓµuvΓ

u
νu . (31)

From equation (31) let us first consider µ = u and ν = v:

Ru
vuv = Γuvu�

�Γvvv +����ΓuuuΓ
u
vv − Γuvu,v − ΓuuvΓ

u
vu

= −Γuvu,v − (Γuuv)
2

=
1

v2
− 1

v2

= 0 . (32)

Let us next (and finally) consider the case where µ = v and ν = u:

Rv
uuv = ����ΓvvuΓ

v
uv + ΓvuuΓ

u
uv − Γvuu,v −����ΓvuvΓ

u
uu

= ΓvuuΓ
u
uv − Γvuu,v

= v

(
1

v

)
− 1

= 0 . (33)

We may conclude that for this particular spacetime the Riemann tensor vanishes everywhere. As such,
we may say that our spacetime is flat.
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Exercise 3

Consider a geodesic curve C and its tangent vector V. Compute the expression for the second convective
derivative of a vector field A along C, i.e. an explicit expression in component form of

∇V∇VA . (34)

Recast the resulting expressions in terms of tensors that you have already encountered and interpret
the results.

Solution 3

First we must calculate the action of the convective derivative on A:

∇VA = V µ∇µA
α

= V µ
(
∂µA

α + ΓαµβA
β
)
. (35)

At this point it is important to remark that equation (35) is actually a rank-1 contravariant tensor
which we may call Tα (all other indices are dummy indices). With this in mind, we may write the
second convective derivative of A as

∇V∇VA = ∇V (∇VA)

= V ν∇νT
α

= V ν
(
∂νT

α + ΓανρT
ρ
)
. (36)

From here we must explicitly expand (36), yielding:

∇V∇VA = V ν
[

(∂νV
µ) (∂µA

α) + V µ∂ν∂µA
α + (∂νV

µ) ΓαµβA
β

+ V µ∂νΓ
α
µβA

β + V µΓαµβ∂νA
β

+ ΓανρV
µ∂µA

ρ + ΓανρV
µΓρµβA

β
]
. (37)

Let us now write the above expression as:

∇V∇VA = V ν
[

(∂νV
µ) (∂µA

α) + V µ∂ν∂µA
α + (∂νV

µ) ΓαµβA
β

+ V µΓαµβ∂νA
β + V µ∂νΓ

α
µβA

β + ΓανρV
µ∂µA

ρ
]

+ V ν
[
V µ∂νΓ

α
µβA

β + ΓανρV
µΓρµβA

β
]

= V ν
[

(∂νV
µ) (∂µA

α) + V µ∂ν∂µA
α + (∂νV

µ) ΓαµβA
β

+ V µΓαµβ∂νA
β + V µ∂νΓ

α
µβA

β + ΓανρV
µ∂µA

ρ
]

+ V ν
[
V µ∂νΓ

α
µβA

β + ΓανρV
µΓρµβA

β
]
, (38)
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which may be further simplified as:

∇V∇VA = V ν
[

(∂νV
µ)
(
∂µA

α + ΓαµβA
β
)

+ V µ∂ν∂µA
α

+ V µ∂νΓ
α
µβA

β + V µΓαµβ∂νA
β + V µΓανρ∂µA

ρ
]

+ V ν
[
V µ∂νΓ

α
µβA

β + ΓανρV
µΓρµβA

β
]

= V ν
[

(∂νV
µ) (∇µA

α) + V µ∂ν∂µA
α

+ V µ∂νΓ
α
µβA

β + 2V µΓαµβ∂νA
β
]

(letting ρ→ β and µ↔ ν)

+ V νV µ
[
∂νΓ

α
µβA

β + ΓανρΓ
ρ
µβA

β
]
. (39)

At this point we remark that all terms in the first square brackets of equation (39) are unchanged
under interchange of µ and ν indices, whereas the two terms in the second pair of square brackets are
not. As such, if we calculate 2∇[ν∇µ]A

α we will find that the first set of terms in the square brackets
will vanish. Doing this for the second convective derivative we derived we obtain:

2∇[V∇V]A = V νV µ
(
∂νΓ

α
µβA

β + ΓαµρΓ
ρ
νβA

β − ∂µΓανβA
β − ΓαµρΓ

ρ
νβA

β
)

= V νV µRα
βνµA

β , (40)

thus we obtain an expression which depends on the Riemann curvature tensor. The expression ∇[V∇V]

(or ∇[ν∇µ] in component form) thus measure differences in a vector which is transported in different
directions around (say) a closed loop but which reach the same point. This equation is known as the
geodesic deviation equation.
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General Relativity: Solutions to exercises in
Lecture X

January 29, 2018

Exercise 1

Show that the second covariant derivatives of a scalar field commute, i.e. that

∇α∇βφ = ∇β∇αφ . (1)

Obtain the expressions for the following third derivatives: ∇α∇(β∇γ)φ and ∇[α∇β]∇γφ. [Hint: remem-
ber that the covariant derivative of a scalar field is a vector.]

Solution 1

• For the first part of the question we consider the action of the covariant derivatives in order,
remembering that the covariant derivative of a scalar is simply the partial derivative acting on
that scalar. This yields:

∇α∇βφ = (φ;β);α
= (φ,β);α

= φ,αβ − φ,δΓδαβ . (2)

Since the Christoffel symbols are symmetric in their lower indices (torsion-free) and partial deriva-
tives commute, we may conclude that ∇α∇βφ = ∇β∇αφ, as required.

• For the second part of the question, let us first define the covariant vector Wγ ≡ ∇γφ. Now
consider

∇α∇β∇γφ = ∇α∇βWγ , (3)

and similarly
∇α∇γ∇βφ = ∇α∇γWβ . (4)

Using the result of the first part of the question we may write

∇βWγ = ∇γWβ . (5)

Employing the above we may now write

∇α∇(β∇γ)φ =
1

2
∇α (∇βWγ +∇γWβ)

= ∇α∇βWγ

= ∇α∇β∇γφ . (6)

1



• For the final part of the question let us directly expand the expression in question:

∇[α∇β]∇γφ = ∇[α∇β]Wγ

=
1

2
(∇α∇βWγ −∇β∇αWγ)

=
1

2
Rδ

αβγWδ

=
1

2
Rδ

αβγφ;γ

=
1

2
Rδ

αβγφ,γ . (7)

Exercise 2

Prove that for any second-rank tensor, the covariant derivative commutes, i.e. that

∇α∇βV
αβ = ∇β∇αV

αβ . (8)

Solution 2

First recall the fact that ∇βV
αβ is a rank-1 contravariant tensor, thus we may define W µ ≡ ∇βV

µβ.
Next, let us write explicitly the expression for W µ as follows:

W µ = ∂βV
µβ + ΓµβδV

δβ + ΓββδV
µδ . (9)

We may now write the covariant derivatives acting on V αβ as:

∇α∇βV
αβ = ∇αW

α

= ∂αW
α + ΓααγW

γ . (10)

Thus we may write the LHS and RHS of equation (8) as:

∇α∇βV
αβ = ∂α∂βV

αβ + ∂α
(
ΓαβδV

δβ
)

+ ∂α

(
ΓββδV

αδ
)

+ Γααγ∂βV
γβ + ΓααγΓ

γ
βδV

δβ

+ ΓααγΓ
β
βδV

γδ , (11)

and

∇β∇αV
αβ = ∂β∂αV

αβ + ∂β
(
ΓααδV

δβ
)

+ ∂β

(
ΓβαδV

αδ
)

+ Γββγ∂αV
αγ + ΓββγΓ

α
αδV

δγ

+ ΓββγΓ
γ
αδV

αδ . (12)

Consider each term in eqns. (11) & (12), and let us refer to these equations as L and R respectively,
along with the indices 1–6 indicating terms 1–6 respectively in each expression. Under α↔ β:

L1 = R1 ,

L2 = R3 ,

L3 = R2 ,

L4 = R4 ,

L5 = R6 ,

L6 = R5 .

We may thus conclude that ∇α∇βV
αβ = ∇β∇αV

αβ, as required.
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Exercise 3

Optional : Find the matrix of the Lorentz transformations corresponding to a boost vx in the x-direction
followed by a boost vy in the y-direction. What happens if the order of the boosts is reversed?

Solution 3

Let us write the Lorentz boost matrices in the x- and y-directions respectively as:

Λx =


γx γxvx 0 0
γxvx γx 0 0

0 0 1 0
0 0 0 1

 , (13)

and

Λy =


γy 0 γyvy 0
0 1 0 0

γyvy 0 γy 0
0 0 0 1

 . (14)

For the first combination of boosts we obtain:

ΛyΛx =


γxγy γxγyvx γyvy 0
γxvx γx 0 0
γxγyvy γxγyvxvy γy 0

0 0 0 1

 . (15)

Similarly, for the reverse transformation we find:

ΛxΛy =


γxγy γxvx γxγyvy 0
γxγyvx γx γxγyvxvy 0
γyvy 0 γy 0

0 0 0 1

 . (16)

Clearly ΛyΛx 6= ΛxΛy and so the transformations do not commute.
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General Relativity: Solutions to exercises in
Lecture XI

January 29, 2018

All of the following exercises are to be considered in a special-relativistic context and assuming
Cartesian co-ordinates where necessary.

Exercise 1

Within Special Relativity, consider a four-vector V with components:

V =
√

3 et +
√

2 ex . (1)

Determine if V is timelike, null or spacelike. Compute the angles between V and the unit vectors et
and ex.

Solution 1

First let us consider the inner-producut of V with itself:

V ·V =
(√

3
)2

et · et +
(√

2
)2

ex · ex + 2
√

2
√

3 et · ex
= −3 + 2 + 0

= −1 < 0 , (2)

therefore V is timelike. For the angles, first let us consider the t-component. From the inner-product
we may calculate the angle between V and et as:

cos θt =
V · et

|V ·V|1/2|et · et|1/2

= −
√

3 < −1 , (3)

which is not satisfied for any real θt. Similarly, for θx we find:

cos θx =
√

2 > 1 , (4)

which is also not satisfied for any real θx.
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Exercise 2

A particle with rest mass m and four-momentum p = mv is analysed by an observer with
four-velocity u. Compute the following:

• The total energy of the particle

• The kinetic energy of the particle

• The magnitude of the spatial momentum p :=
√
pipi

• The magnitude of the three-velocity v :=
√
vivi

Solution 2

Let us work in the rest frame of the observer. In this frame:

uα = (1, 0) , (5)

uα = (−1, 0) , (6)

pα = (E, p) , (7)

pα = (−E, p) , (8)

where p is the three-momentum.

• The total energy may be obtained directly as

E = −p0u0

= −pαuα . (9)

• Starting form the expression for the total energy of a particle as E2 = p2c2 +m2c4 one obtains
the rest mass of the particle as:

m2 = E2 − |p|2

= −p0p0 − pipi

= −pαpα , (10)

from which the kinetic energy of the particle may be directly derived as:

K.E. =
1

2
m|v|2

=
1

2

√
−pαpα v2

=
1

2

√
−pαpα

√
−vivi . (11)

• Starting again from the expression for the total energy of the particle, the magnitude of the
three-momentum may be calculated as:

p =
(
E2 −m2

)1/2
=

[
(pαu

α)2 + pβp
β
]1/2

. (12)
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• Finally, the magnitude of the three-velocity may be calculated directly as:

v =
p

E

=
1

E

(
E2 −m2

)1/2
=

(
1− m2

E2

)1/2

=

[
1 +

pαp
α

(pβuβ)2

]1/2
. (13)

Exercise 3

Define the four-acceleration of a particle with four-velocity u as

aµ :=
duµ

dτ
, (14)

where τ is the proper time. Show that a · u = 0, i.e. that the acceleration is orthogonal to the
four-velocity. What does this mean in a frame co-moving with the particle?

Solution 3

Let us start with the following identity for a particle in General Relativity:

uµu
µ = −1 , (15)

from which it immediately follows that

d

dτ
(uµu

µ) = 0 . (16)

Expanding the above expression yields:

d

dτ
(uµu

µ) = 2
duµ
dτ

uµ

= 2 aµu
µ

= 0 . (17)

We may thus conclude that a · u = 0, as required.

In a frame co-moving with the particle, uµ = (1, 0). In this frame aµu
µ = 0 implies that a0 = 0 by

necessity, but that the spatial components of the four-acceleration, ai, are arbitrary.
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General Relativity: Solutions to exercises in
Lecture XII

January 29, 2018

Exercise 1

Consider the stress-energy-momentum tensor of a perfect fluid

T µν = (e+ p)uµuν + p gµν , (1)

and its conservation equation
∇µT

µν = 0 . (2)

Show that the equations (2) lead to the Euler equations, i.e. to the equations of conservation of
momentum

(e+ p)∇uu = − [∇p+ (∇u p) u] . (3)

[Hint: use the projector h = g + u u]. Do equations (3) bear resemblance with the Newtonian Euler
equations?

Solution 1

First, let us write out the covariant derivative of the stress-energy-momentum tensor:

∇µT
µν = (e+ p);µu

µuν + (e+ p)
(
uµ;µu

ν + uµuν;µ
)

+ p;µg
µν . (4)

Let us now us the projection tensor hαν = gαν + uαuν to project orthogonally to u, yielding

hαν∇µT
µν = (e+ p);µ(((((((((((

[uµuα + uαu
µ (uνu

ν)] + (e+ p)
[
((((((((((((((
uµ;µuα + uαu

µ
;µ (uνu

ν)
)

+
(
uµgανu

ν
;µ + uαu

µuνu
ν
;µ

) ]
+ p,µδ

µ
α + p,µu

µuα

= (e+ p)uµuα;µ + p,α + p,µu
µuα , (5)

where we have used the fact that uνu
ν = −1 and uνu

ν
;µ = 0. Since hαν∇µT

µν = 0 we may now write

(e+ p)uµuα;µ = − (p,α + p,µu
µuα) , (6)

which is equivalent to
(e+ p)∇uu = − [∇p+ (∇u p) u] , (7)

as required.
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In the Newtonian limit we may adopt the following approximations:

• p� e,

• e ≈ ρ0,

• v2 � 1,

• g00 = −(1 + 2φ), |φ| � 1, where φ is the Newtonian potential.

We may immediately let (e+ p)→ ρ0, and through expanding the covariant derivative we obtain

ρ0
[
uµuα,µ − Γβµαuβu

µ
]

= −p,α − uαuµp,µ . (8)

We now take: (i) uβu
µ ∼ O(v2) for β 6= µ and uβu

µ = −1 for β = µ and (ii) uαu
µp,µ ∼ O(v2) → 0.

With these in mind we obtain
ρ0

[
uµuα,µ + Γββα

]
= −p,α . (9)

Recall from Problem Sheet 7, Exercise 3, part 5 we derived the following expression:

Γββα =
1

2
gβδgδβ,α . (10)

Since spacetime is now flat and g00 = −(1 + 2φ), so g00 = −(1/g00) ≈ −1, since |φ| � 1. This implies

Γββα = Γ0
0α

≈ 1

2
(−1) [−(1 + 2φ)],α

= φ,α , (11)

hence we obtain
ρ0 (uµuα,µ + φ,α) = −p,α , (12)

which may be rewritten as

uµuα,µ = − 1

ρ0
p,α − φ,α , (13)

which is precisely the (Newtonian) incompressible Euler momentum equation with a constant and uni-
form density. This may be written more succinctly as follows. First define the specific thermodynamic
work, w, where w ≡ p/ρ0 and the gravitational acceleration g ≡ −∇φ. The material derivative is
defined in general relativity as D

Dτ
= uµ∇µ and in the Newtonian regime as D

Dt
= ∂

∂t
+ u · ∇. We may

now rewrite equation (13) as
Du

Dt
= −∇w + g . (14)

Exercise 2

The stress-energy-momentum tensor of a scalar field Φ is defined as

Tµν =
1

4π

(
∂µΦ ∂νΦ−

1

2
gµν ∂αΦ ∂αΦ

)
. (15)

Derive the expression for the conservation of energy and momentum (2) in this case. Interpret the
results.
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Solution 2

We first write out the covariant derivative ∇µTµν = 0 as follows

∇µ (4πTµν) = Φ ;µ
,µ Φ,ν + Φ,µΦ ;µ

,ν −
1

2
gµν (Φ,αΦ,α);µ . (16)

Defining the differential portion of the third term as ∆ = (Φ,αΦ,α);µ we may write

∆ = Φ ;µ
,α Φ,α + Φ,αΦ,α;µ

= gαβgαγΦ
,γ;µΦ,β + Φ,αΦ,α;µ

= δβγΦ,γ;µΦ,β + Φ,αΦ,α;µ

= Φ,β;µΦ,β + Φ,αΦ,α;µ

= 2Φ,αΦ,α;µ . (17)

Equation (16) becomes

∇µ (4πTµν) = Φ ;µ
,µ Φ,ν + Φ,µΦ ;µ

,ν − Φ,αΦ,α
;ν

= Φ ;µ
,µ Φ,ν +

(
Φ ;µ
,ν − Φ,µ

;ν

)
Φ,µ

= Φ ;µ
,µ Φ,ν +

(
gαµΦ,ν;α − gβµΦ,β;ν

)
Φ,µ

= Φ ;µ
,µ Φ,ν + (Φ,ν;α − Φ,α;ν) g

αµΦ,µ

= Φ ;µ
,µ Φ,ν + (Φ,ν;α − Φ,α;ν) Φ,α . (18)

Since partial derivatives commute, and the covariant derivative of a scalar is simply the partial deriva-
tive, the second term in brackets vanishes and we may write

∇µ (4πTµν) = Φ ;µ
,µ Φ,ν . (19)

Since we assume Φ,ν 6= 0 and Φ ;µ
,µ ≡ Φ ;µ

;µ we may write the conservation of energy and momentum as

Φ ;µ
;µ = 0 , (20)

which is equivalent to
�Φ = 0 . (21)

Thus Φ satisfies the wave equation for a scalar field in vacuum.

Exercise 3

Show that the Einstein equations in vacuum reduce to

Rµν = 0 . (22)
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Solution 3

Let us start from the definition of the Einstein Tensor

Gµν = Rµν −
1

2
Rgµν . (23)

In the presence of matter the Einstein field equations, Gµν = 8π Tµν may be written as

Rµν −
1

2
Rgµν = 8πTµν . (24)

Multiplying both sides of this equation by gµν yields

gµνRµν −
1

2
Rgµνgµν = 8πgµνTµν , (25)

which simplifies to
R = −4πT , (26)

where we have used the fact that gµνgµν = 4 and defined T ≡ gµνTµν . Substituting R = −4πT back
into equation (24) yields, upon simplification

Rµν = 8π

(
Tµν −

1

2
gµνT

)
. (27)

In vacuum Tµν = 0, which implies T = 0, and thus we obtain

Rµν = 0 , (28)

as required.
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General Relativity: Solutions to exercises in
Lecture XIII

January 29, 2018

Exercise 1

Consider the spherically symmetric static line element

ds2 = −A(r) dt2 +B(r) dr2 + C(r) dΩ2 , (1)

and compute the expressions for the non-zero Christoffel symbols. Use this result to compute the 00
covariant component of the Einstein equations in vacuum, i.e. Rµν = 0.

Solution 1

• Whilst one may calculate the Christoffel symbol components directly, we will derive them from
the Lagrangian for the metric. First let us write the Lagrangian as

L =
1

2

(
−A ṫ2 +B ṙ2 + C θ̇2 + C sin2 θ φ̇2

)
, (2)

where the dependence of A, B and C on r has been omitted for brevity and an overdot denotes
differentiation with respect to the affine parameter, λ. We now systematically derive the Euler-
Lagrange equations of motion for each of the four components of our metric. For the t component:

∂L
∂t

= 0 , (3)

∂L
∂ṫ

= −A ṫ , (4)

d

dλ

(
∂L
∂ṫ

)
= −A′ ṙ ṫ− A ẗ , (5)

where primed quantities denote differentiation with respect to r. Thus from the Euler-Lagrange
equations we obtain the geodesic equation of motion for t as

ẗ = −
(
A′

A

)
ṙ ṫ . (6)

1



This may be immediately compared to the geodesic equation of motion for t, yielding the non-zero
Christoffel symbol components as

Γttr = Γtrt =
1

2

(
A′

A

)
. (7)

Next we consider the r component of the Euler-Lagrange equations, yielding

∂L
∂r

=
1

2

(
−A′ ṫ2 +B′ ṙ2 + C ′ θ̇2 + C ′ sin2 θ φ̇2

)
, (8)

∂L
∂ṙ

= B ṙ ṫ , (9)

d

dλ

(
∂L
∂ṙ

)
= B′ ṙ2 +B r̈ . (10)

We may now write the geodesic equation of motion for r as

r̈ = −1

2

(
A′

B

)
ṫ2 − 1

2

(
B′

B

)
ṙ2 +

1

2

(
C ′

B

)
θ̇2 +

1

2

(
C ′

B

)
sin2 θ φ̇2 , (11)

from which we directly obtain the Christoffel symbols as

Γrtt =
1

2

(
A′

B

)
, (12)

Γrrr =
1

2

(
B′

B

)
, (13)

Γrθθ = −1

2

(
C ′

B

)
, (14)

Γrφφ = −1

2

(
C ′

B

)
sin2 θ . (15)

Now considering the θ component of the Euler-Lagrange equations we obtain

∂L
∂θ

= C sin θ cos θ φ̇2 , (16)

∂L
∂θ̇

= C θ̇ ṫ , (17)

d

dλ

(
∂L
∂θ̇

)
= C ′ ṙ θ̇ + C θ̈ . (18)

We may now write the geodesic equation of motion for θ as

θ̈ = −
(
C ′

C

)
ṙ θ̇ + sin θ cos θ φ̇2 , (19)

from which we directly obtain the Christoffel symbols as

Γθrθ = Γθθr =
1

2

(
C ′

C

)
, (20)

Γθφφ = − sin θ cos θ . (21)
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Finally, we consider the φ component of the Euler-Lagrange equations, obtaining

∂L
∂φ

= 0 , (22)

∂L
∂φ̇

= C sin2 θ ṫ φ̇ , (23)

d

dλ

(
∂L
∂φ̇

)
= C ′ sin2 θ ṙ φ̇+ C sin 2θ θ̇ φ̇+ C sin2 θ φ̈ . (24)

We may now write the geodesic equation of motion for φ as

φ̈ = −
(
C ′

C

)
ṙ θ̇ − 2 cotθ θ̇ φ̇ , (25)

from which we directly obtain the remaining non-zero Christoffel symbols as

Γφrφ = Γφφr =
1

2

(
C ′

C

)
, (26)

Γφθφ = Γφφθ = cotθ . (27)

• For the second part of the question, recall the definition of the Riemann curvature tensor

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ

α
µγ − ΓµβγΓ

α
µδ . (28)

The Ricci tensor is then defined as

Rβδ = Rα
βαδ

= Γαβδ,α − Γαβα,δ + ΓµβδΓ
α
µα − ΓµβαΓαµδ . (29)

The covariant 00 component may now be written as

R00 = Γα00,α −��
��*

0
Γα0α,0 + Γµ00Γ

α
µα − Γµ0αΓαµ0

= Γα00,α + Γµ00Γ
α
µα − Γµ0αΓαµ0

= Γr00,r + Γr00Γ
α
rα − Γµ0αΓαµ0

= Γr00,r + Γr00Γ
α
rα − Γµ00Γ

0
µ0 − Γµ0rΓ

r
µ0

= Γr00,r + Γr00Γ
α
rα − Γr00Γ

0
r0 − Γ0

0rΓ
r
00

= Γr00,r + Γr00Γ
α
rα − 2Γr00Γ

0
r0

= Γr00,r + Γr00

(
Γ0

r0 + Γrrr + Γθrθ + Γφrφ

)
− 2Γr00Γ

0
r0

= Γr00,r + Γr00

(
Γrrr + Γθrθ + Γφrφ − Γ0

r0

)
. (30)

Substituting the values for the Christoffel symbol components into equation (30) we obtain, upon
simplification

R00 =
1

2

A′′

B
+

1

4

A′

B

[
2
C ′

C
− A′

A
− B′

B

]
. (31)
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For completeness, the remaining non-zero covariant components of the Ricci tensor are

R11 = −1

2

A′′

A
− C ′′

C
+

1

4

A′

A

(
A′

A
+
B′

B

)
+

1

2

C ′

C

(
C ′

C
+
B′

B

)
, (32)

R22 = 1− 1

2

C ′′

B
+

1

4

C ′

B

(
B′

B
− A′

A

)
, (33)

R33 = R22 sin2 θ . (34)

Exercise 2

Using the Lagrangian
2L = gαβẋ

αẋβ , (35)

where an overdot corresponds to differentiation with respect to the proper time, show that the geodesic
equations

ẍα + Γαβγẋ
βẋγ = 0 , (36)

are equivalent to the Euler-Lagrange equations

∂L
∂xα
− d

dτ

(
∂L
∂ẋα

)
= 0 . (37)

Solution 2

Let us first calculate the first term in equation (37):

∂L
∂xγ

=
1

2
gαβ,γẋ

αẋβ . (38)

Now we consider the bracketed second term:

∂L
∂ẋγ

=
1

2
gαβ
(
δαγ ẋ

β + ẋαδβγ
)

=
1

2

(
gγβẋ

β + ẋαgαγ
)

= gαγẋ
α . (39)

Finally, we differentiate equation (39) with respect to proper time, yielding:

d

dτ

(
∂L
∂ẋγ

)
=

d

dτ
(gαγ) ẋ

α + gαγẍ
α

= ẋδgαγ,δẋ
α + gαγẍ

α

= gαγ,δẋ
δẋα + gαγẍ

α . (40)

Now we may write down the Euler-Lagrange equations, and solving for ẍα we obtain

gαγẍ
α =

1

2
gαβ,γẋ

αẋβ − gαγ,δẋδẋα

=
1

2
gαβ,γẋ

αẋβ − 1

2

(
gαγ,δẋ

δẋα + gδγ,αẋ
δẋα
)
, (41)
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where we have made use of the symmetry under interchange of δ ↔ α in the second term on the right
hand side. Since δ is a dummy index we may relabel it as δ → β, yielding

gαγẍ
α =

1

2
(gαβ,γ − gαγ,β − gβγ,α) ẋαẋβ . (42)

Multiplying both sides by gγµ, using the identity gαγg
γµ = δµα and bringing all terms to the left hand

side we obtain

ẍµ +
1

2
gγµ (gαγ,β + gβγ,α − gαβ,γ) ẋαẋβ = 0 . (43)

It is straightforward to confirm that the term multiplying ẋαẋβ is precisely Γµβα = Γµαβ and thus we
obtain

ẍµ + Γµαβẋ
αẋβ = 0 , (44)

which is the geodesic equation of motion, as required.

Exercise 3

Optional : Using the Einstein-Hilbert action

S =

∫
d4x
√
−g R , (45)

show that the application of a variational principle δS = 0 yields the Einstein field equations in vacuum,
i.e.

Rµν −
1

2
gµνR = 0 . (46)

Solution 3

First we may write

δS = 0 ⇐⇒ δ

∫
d4x
√
−g R = 0 . (47)

Now let us vary
√
−g , yielding

δ
(√
−g
)

= − δg

2
√
−g

. (48)

Now recall from Problem Sheet 7, Exercise 3, part 4, we proved the following result:

(ln |g|),α = gµνgµν,α . (49)

This implies that
g,α = g gµνgµν,α , (50)

and thus we may write δg as

δg = g gµν δgµν

= −g gµν δgµν . (51)

5



We may now write δ (
√
−g ) as:

δ
(√
−g
)

=
g gµν δg

µν

2
√
−g

= −1

2

(−g)√
−g

gµν δg
µν

= −1

2

√
−g gµν δgµν . (52)

We must next consider the variation of the Ricci scalar R = gµνRµν . We may write this as

δR = δgµνRµν + gµν δRµν . (53)

Substituting equations (52) and (53) into equation (47) yields:

δ

∫
d4x
√
−g R =

∫
d4x

[
δ
(√
−g
)
R +

√
−g δR

]
=

∫
d4x
√
−g

[
−1

2
gµν δg

µν R + (δgµνRµν + gµνδRµν)

]
=

∫
d4x
√
−g

[
δgµν

(
Rµν −

1

2
gµν R

)
+ gµν δRµν

]
=

∫
d4x
√
−g (δgµν Gµν + gµν δRµν) = 0 , (54)

where Gµν ≡
(
Rµν − 1

2
gµν R

)
is the Einstein tensor. It is now clear that in order for us to obtain the

Einstein field equations in vacuum, the second term in brackets in equation (54) must vanish.
Let us now turn our attention to the variation of the Ricci tensor, δRµν . First, recall the definition

of the Riemann curvature tensor

Rµ
ναβ = Γµνβ,α + ΓµραΓρνβ − Γµνα,β − ΓµρβΓρνα . (55)

Next, consider the variation of the Riemann curvature tensor:

δRµ
ναβ = ∂α

(
δΓµνβ

)
+
(
δΓµρα

)
Γρνβ + Γµρα

(
δΓρνβ

)
− ∂β (δΓµνα)−

(
δΓµρβ

)
Γρνα − Γµρβ (δΓρνα) . (56)

This expression can be written much more succinctly in terms of covariant derivatives. The first and
fourth terms contains a partial derivative, so we consider the following:

∇α

(
δΓµνβ

)
= ∂α

(
δΓµνβ

)
+ Γµαρ

(
δΓρνβ

)
− Γραν

(
δΓµρβ

)
− Γραβ

(
δΓµνρ

)
, (57)

∇β (δΓµνα) = ∂β (δΓµνα) + Γµβρ (δΓρνα)− Γρβν
(
δΓµρα

)
− Γραβ

(
δΓµνρ

)
. (58)

It immediately follows that the difference between equations (57) and (58) enables equation (56) to be
written as

δRµ
ναβ = ∇α

(
δΓµνβ

)
−∇β (δΓµνα) . (59)

We may now calculate δRµν as follows:

δRνβ = δRα
ναβ

= ∇α

(
δΓανβ

)
−∇β (δΓανα) , (60)
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and thus we obtain upon relabelling indices (β ↔ ν followed by β → µ):

δRµν = ∇α

(
δΓαµν

)
−∇ν

(
δΓαµα

)
. (61)

We may now write the second term in brackets in equation (54) as:

gµν δRµν = ∇α

(
gµνδΓαµν

)
−∇ν

(
gµνδΓαµα

)
= ∇α

(
gµνδΓαµν − gµαδΓνµν

)
, (62)

where we have let α↔ ν in the second term. We may now write the second term in equation (54) as∫
d4x
√
−g gµν δRµν =

∫
d4x
√
−g ∇α

(
gµνδΓαµν − gµαδΓνµν

)
. (63)

To proceed further, recall Problem Sheet 7, Exercise 3, part 5, where we proved the following identity:

Aα;α =
1√
−g

(√
−g Aα

)
,α
. (64)

We may define Aα from equation (63) as

Aα = gµνδΓαµν − gµαδΓνµν , (65)

which enables us to rewrite equation (63) as∫
d4x
√
−g gµν δRµν =

∫
d4x∂α

(√
−g Aα

)
= 0 , (66)

since this is a surface integral, yielding a constant boundary term, and by Stokes’s Theorem vanishes.
We may finally write

δS =

∫
d4x
√
−g δgµν Gµν = 0 , (67)

and so we may conclude that

Gµν = Rµν −
1

2
gµν R = 0 , (68)

i.e. the Einstein field equations in vacuum, as required.
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General Relativity: Solutions to exercises in
Lecture XIV

January 29, 2018

Exercise 1

Using the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (1)

where κ = −1, 0, 1. Compute:

• the non-zero Christoffel symbols

• the non-zero components of the Ricci tensor

• the expression for the Ricci scalar

Solution 1

• The first part of the question asks us to calculate the non-zero Christoffel symbol components of
the FLRW metric. Let us begin by writing the Lagrangian for the FLRW metric:

L =
1

2

(
−t′2 +

a2

1− κr2
r′2 + a2r2 θ′2 + a2r2 sin2 θ φ′2

)
, (2)

where primed quantities ( ′ ) denote differentiation with respect to the affine parameter, λ. We
have also written a ≡ a(t) for brevity. Next we employ the Euler-Lagrange equations, which may
be written as:

∂L
∂xα
− d

dλ

(
∂L
∂x′α

)
= 0 . (3)

The Euler-Lagrange equations are equivalent to the geodesic equations of motion (see Lecture
XIII, exercise 2) and so we can read off the Christoffel symbol components directly. First, we
consider the t-component:

∂L
∂t

= a ȧ

(
r′2

1− κr2
+ r2 θ′2 + r2 sin2 θ φ′2

)
, (4)

∂L
∂t′

= −t′ , (5)

d

dλ

(
∂L
∂t′

)
= −t′′ , (6)

1



where an overdot ( ˙ ) denotes differentiation with respect to t. We immediately obtain:

t′′ = − a ȧ

1− κr2
r′2 − a ȧ

(
r2 θ′2 + r2 sin2 θ φ′2

)
. (7)

We may now read off the Christoffel symbol components directly, obtaining:

Γtrr =
aȧ

1− κr2
, (8)

Γtθθ = a ȧ r2 , (9)

Γtφφ = a ȧ r2 sin2 θ . (10)

Next, we consider the r-component of the Euler-Lagrange equations:

∂L
∂r

= a2r

[
κ

(1− κr2)2
+ θ′2 + sin2 θ φ′2

]
, (11)

∂L
∂r′

=
a2

1− κr2
r′ , (12)

d

dλ

(
∂L
∂r′

)
=

2a ȧ

1− κr2
t′ r′ +

κr

(1− κr2)2
r′2 +

a2

1− κr2
r′′ . (13)

We thus obtain the geodesic equation of motion as:

r′′ = −2
ȧ

a
t′ r′ − κr

1− κr2
r′2 + r(1− κr2)θ′2 + r2 sin2 θ(1− κr2φ′2) , (14)

from which the Christoffel symbols are immediately obtained as:

Γrrt = Γrtr =
ȧ

a
, (15)

Γrrr =
κr

1− κr2
, (16)

Γrθθ = −r(1− κr2) , (17)

Γrφφ = −r2 sin2 θ(1− κr2) . (18)

We now consider the θ-component of the Euler-Lagrange equations:

∂L
∂θ

= a2r2 sin θ cos θ φ′2 , (19)

∂L
∂θ′

= a2r2 θ′ , (20)

d

dλ

(
∂L
∂θ′

)
= 2 a ȧ r2t′ θ′ + 2a2r r′ θ′ + a2r2 θ′′ . (21)

This gives the geodesic equation of motion for θ as:

θ′′ = −2
ȧ

a
t′ θ′ − 2

r
r′ θ′ + sin θ cos θ φ′2 , (22)

2



from which the Christoffel symbols immediately follow as:

Γθtθ = Γθθt =
ȧ

a
, (23)

Γθrθ = Γθθr =
1

r
, (24)

Γθφφ = − sin θ cos θ . (25)

Finally, we consider the φ-component of the Euler-Lagrange equations:

∂L
∂φ

= 0 , (26)

∂L
∂φ′

= a2r2 sin2 θ φ′ θ′ , (27)

d

dλ

(
∂L
∂φ′

)
= 2a ȧ r2 sin2 θ t′ φ′ + 2a2r sin2 θ r′ φ′ + 2a2r2 sin θ cos θ θ′ φ′ + a2r2 sin2 θ φ′′,(28)

from which we obtain the geodesic equation of motion for φ as:

φ′′ = −2
ȧ

a
t′ φ′ − 2

r
r′ φ′ − 2cotθ θ′ φ′ . (29)

Thus the final non-zero Christoffel symbols read:

Γφtφ = Γφφt =
ȧ

a
, (30)

Γφrφ = Γφφr =
1

r
, (31)

Γφθφ = Γφφθ = cotθ . (32)

• For the second part of the question, recall the definition of the Ricci tensor, which is the con-
traction of the Riemann curvature tensor over the first and third indices. This may be written
as:

Rµν = Rα
µαν

= Γαµν,α + ΓρµνΓ
α
ρα − Γαµα,ν − ΓρµαΓαρν . (33)

The FLRW metric is spherically symmetric and possesses no off-diagonal terms, i.e. gµν = 0 if
µ 6= ν. Let us consider the four terms in the definition of the Ricci tensor for µ 6= ν.

In this case Γαµν,α = 0 ∀ µ 6= ν (see the Christoffel symbol components). The third term Γαµα,ν = 0
also, since Γαµα ∝ f (xµ) and thus Γαµα,ν = 0 since µ 6= ν.

For a spherically symmetric metric Γαµν = 0 if α 6= µ 6= ν, which follows from the definition of
the Christoffel symbols. Using this, it may be shown that for all six independent combinations of
(µ, ν), with µ 6= ν, that ΓρµνΓ

α
ρα− ΓρµαΓαρν = 0. We may thus conclude that Rµν = 0 for µ 6= ν.

Let us consider the diagonal components of the Ricci tensor term-by-term. First the tt component:

Rtt =��
��*0

Γαtt,α +�
��>

0
ΓρttΓ

α
ρα − Γαtα,t − ΓρtαΓαρt . (34)
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For the third and fourth terms we obtain:

Γαtα,t = Γi ti,t

= 3

(
a ä− ȧ2

a2

)
, (35)

ΓρtαΓαρt = ΓρtiΓ
i
ρt

=
(
Γi ti
)2

(only ρ = i gives a nonzero result)

= 3
ȧ2

a2
, (36)

where the index i denotes spatial co-ordinates (r, θ, φ). Thus we immediately find:

Rtt = −3
ä

a
. (37)

We next consider the rr component of the Ricci tensor:

Rrr = Γαrr,α + ΓρrrΓ
α
ρα − Γαrα,r − ΓρrαΓαρr . (38)

For the first term:

Γαrr,α = Γtrr,t + Γrrr,r

=
ȧ2 + a ä+ κ

1− κr2
+

2κ2r2

(1− κr2)2
. (39)

For the second term:

ΓρrrΓ
α
ρα = ΓtrrΓ

α
tα

= Γtrr
(
Γi ti
)

+ Γrrr
(
Γi ri
)

=
3ȧ2 + 2κ

1− κr2
+

κ2r2

(1− κr2)2
. (40)

For the third term:

Γαrα,r = Γi ri,r

=
2κ2r2

(1− κr2)2
+

κ

1− κr2
− 2

r2
. (41)

For the fourth term:

ΓρrαΓαρr = ΓρrtΓ
t
ρr + ΓρriΓ

i
ρr

= ΓrrtΓ
t
rr + ΓtriΓ

i
tr + Γi riΓ

i
ir

= 2ΓrrtΓ
t
rr +

(
Γi ri
)2

=
κ2r2

(1− κr2)2
+

2ȧ2

1− κr2
+

2

r2
. (42)

We thus obtain:

Rrr =
2κ+ 2ȧ2 + a ä

1− κr2
. (43)
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The θθ component of the Ricci tensor yields:

Rθθ = Γαθθ,α + ΓρθθΓ
α
ρα − Γαθα,θ − ΓρθαΓαρθ . (44)

For the first term we obtain:

Γαθθ,α = Γtθθ,t + Γrθθ,r

= −1 + 3κr2 + r2(ȧ2 + a ä) . (45)

For the second term we obtain:

ΓρθθΓ
α
ρα = ΓtθθΓ

α
tα + ΓrθθΓ

α
rα

= ΓtθθΓ
i
ti + ΓrθθΓ

i
ri

= 3ȧ2r2 + κr2 − 2 . (46)

For the third term we obtain:

Γαθα,θ = Γφθφ,θ

= −cosec2θ . (47)

For the fourth term we obtain:

ΓρθαΓαρθ = ΓρθtΓ
t
ρθ + ΓρθiΓ

i
ρθ

= ΓρθtΓ
t
ρθ + ΓtθiΓ

i
tθ + ΓjθiΓ

i
jθ

= ΓθθtΓ
t
θθ + ΓtθiΓ

i
tθ + ΓjθiΓ

i
jθ

= ΓθθtΓ
t
θθ + ΓtθθΓ

θ
tθ + ΓjθiΓ

i
jθ

= 2ΓθθtΓ
t
θθ + ΓjθiΓ

i
jθ

= 2ΓθθtΓ
t
θθ + ΓrθθΓ

θ
rθ + ΓθθrΓ

r
θθ + ΓφθφΓφφθ

= 2ΓθθtΓ
t
θθ + 2ΓrθθΓ

θ
rθ +

(
Γφθφ

)2
= 2ȧ2r2 + 2κr2 − 2 + cot2θ . (48)

We thus obtain:
Rθθ = r2

(
2κ+ 2ȧ2 + a ä

)
. (49)

Finally, we consider the φφ component of the Ricci tensor:

Rφφ = Γαφφ,α + ΓρφφΓαρα −��
��*

0
Γαφα,φ − ΓρφαΓαρφ . (50)

The first term gives:

Γαφφ,α = Γiφφ,i

= − cos2 θ +
(
ȧ2 + a ä+ 3κ

)
r2 sin2 θ . (51)

The second term gives:

ΓρφφΓαρα = ΓtφφΓαtα + ΓrφφΓαrα + ΓθφφΓαθα

= ΓtφφΓi ti + ΓrφφΓi ri + ΓθφφΓφθφ

=
(
3ȧ2 + κ

)
r2 sin2 θ − 1− sin2 θ . (52)
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The fourth term gives:

ΓρφαΓαρφ = ΓρφtΓ
t
ρφ + ΓρφrΓ

r
ρφ + ΓρφθΓ

θ
ρφ + ΓρφφΓφρφ

= ΓφφtΓ
t
φφ + ΓφφrΓ

r
φφ + ΓφφθΓ

θ
φφ +

(
ΓtφφΓφtφ + ΓrφφΓφrφ + ΓθφφΓφθφ

)
= 2

(
ΓφφtΓ

t
φφ + ΓφφrΓ

r
φφ + ΓφφθΓ

θ
φφ

)
=

(
2ȧ2 + 2κ

)
r2 sin2 θ − 2 . (53)

Thus we obtain:
Rφφ = r2 sin2 θ

(
2κ+ 2ȧ2 + a ä

)
. (54)

Defining A ≡ 2κ+ 2ȧ2 + a ä we may write the non-zero Ricci tensor components more succinctly
as:

Rtt = −3
ä

a
, (55)

Rii = gii
A
a2

. (56)

• For the third part of the question we are asked to calculate the Ricci scalar. This follows
straightforwardly from equations (55)–(56):

R = gµνRµν

= gttRtt + giiRii

= 3
ä

a
+ giigii

A
a2

= 3
ä

a
+ 3
A
a2

=
6

a2
(
κ+ ȧ2 + a ä

)
. (57)

Exercise 2

Exploiting the results of the previous exercise, use the Einstein equations for the FLRW metric to
derive the Friedmann equations. For simplicity set Λ = 0.

Solution 2

Since Exercise 3 requires Λ > 0 we will also assume this in the following solution. The Einstein field
equations may be written as:

Rµν −
1

2
gµνR + Λgµν = 8πTµν , (58)

where
Tµν = (e+ p)uµuν + pgµν . (59)

We are in the comoving frame of the fluid, where uα = (1, 0) and uα = (−1, 0), and therefore:

Ttt = e , (60)

Tii = pgii . (61)
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Considering the tt component of the Einstein field equations we obtain:

Rtt −
1

2
gttR + Λgtt = 8πTtt

=⇒ −3
ä

a
+

3

a2
(
κ+ ȧ2 + a ä

)
− Λ = 8πe

=⇒
(
ȧ

a

)2

=
1

3
(8πe+ Λ)− κ

a2
, (62)

which is the first Friedmann equation. We now consider the spatial component of the Einstein field
equations:

Rii −
1

2
giiR + Λgii = 8πTii

=⇒ gii
A
a2

+ gii

(
−1

2
R + Λ− 8πp

)
= 0

=⇒ −2
ä

a
− κ

a2
− ȧ2

a2
+ Λ− 8πp = 0 (use equation (62))

=⇒ ä

a
= −4π

3
(e+ 3p) +

Λ

3
, (63)

which is the second Friedmann equation.

Exercise 3

Optional : Consider the case of an equation of state where p = −e and Λ > 0. Derive the evolution
equation for the scale factor. What type of universe is this?

Solution 3

In the comoving frame the stress-energy-momentum tensor of a perfect fluid may be written as:

T µν = (e+ p)uµuν + pδµν
= diag(−e, p, p, p) . (64)

The spatial component of the conservation equation (∇µT
µ
ν = 0) trivially vanishes, implying uniform

pressure. However, it is straightforward to show that the time component yields the fluid conservation
equation:

ė+ 3
ȧ

a
(e+ p) = 0 . (65)

For the given equation of state, this implies that ė = 0 and hence e = e0 = constant. Substituting this
into the second Friedmann equation we obtain:

ä

a
=

8π

3
e0 +

Λ

3
=⇒ ä = Ca , (66)

7



where C ≡ (Λ + 8πe0)/3. Now, since Λ > 0 and e0 ≥ 0, then this implies that C > 0. Integrating
equation (66) directly yields:

a(t) = c1e
√
C t + c2e

−
√
C t , (67)

where the integration constants c1 and c2 may be calculated from this equation and the first Friedmann
equation as:

c1 + c2 = a0 , (68)

Ca20 − κ = ȧ0 , (69)

where a0 and ȧ0 are the initial values of a(t) and ȧ(t) at t = 0. Equation (67) has a minimum at:

tmin =
1√
C

ln

√
c2
c1

, (70)

and since t ≥ 0 for the universe we know that if c2 > c1 then there exists a minimum value of t > 0.
We assume c1 and c2 are both positive. Thus, if c1 > c2 the universe expands exponentially from t = 0.
If, however, c2 > c1 then the universe contracts between t = 0 and tmin, before expanding exponentially
thereafter.
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General Relativity: Solutions to exercises in
Lecture XV

February 5, 2018

Exercise 1

The simplest solution to the linearised Einstein equations is a plane wave of the form:

h̄µν = R
{
Aµνe

iκαxα
}
, (1)

where R denotes the real part, A is the “amplitude” tensor and κ is a null four-vector which satisfies
κακ

α = 0. In such a solution, the plane wave donated by equation (1) travels in the spatial direction
~k = (κx, κy, κz)/κ

0, with frequency ω ≡ κ0 = (κjκ
j)

1/2
. Determine the conditions such that the

amplitude tensor A has only two linearly independent components, corresponding to the two states of
polarisation of the gravitational waves.

Solution 1

Aµν has at most 10 independent components. The solution to the linearised field equations � h̄µν = 0
is given by equation (1). Inserting this solution back into the linearised field equations yields:

� h̄µν = ηαβ∂α∂βh̄µν

= ηαβ∂α
(
iκβh̄µν

)
= −ηαβκακβh̄µν
= − (κακ

α) h̄µν = 0 , (2)

and thus we obtain the condition κακ
α = 0. Defining κα = (ω, κ0~k) and κα = (−ω, κ0~k) we then

immediately obtain ω ≡ κ0 = (κjκ
j)

1/2
. Next, imposing the Lorentz (also know as de Donder) gauge

h̄µν,µ = 0 we obtain:

∂µ
(
Aµνeiκαx

α)
= iAµνκµeiκαx

α

= i (κµA
µν) eiκαx

α

= 0 , (3)

from which we obtain the condition:
κµA

µν = 0 , (4)

i.e. the wave vector is orthogonal to Aµν . This condition constitutes a set of 4 algebraic equations and
thus the number of degrees of freedom of Aµν are reduced from 10 to 6. So far, whilst we have imposed
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the Lorentz gauge, we still have some remaining co-ordinate freedom. If we consider a co-ordinate
transform of the form:

x′µ = xµ + ξµ , (5)

then �x′µ = 0 if � ξµ = 0, which is also a wave equation. This has the solution

ξµ = Bµeiκαx
α

, (6)

where κα is the wave vector and Bµ are constant coefficients. The remaining co-ordinate freedom allows
us to transform from Aµν → A′µν such that:

• A′ 0ν = 0 (wave amplitude transverse to its propagation direction)

• A′µµ = 0 (traceless)

The choice of gauge sets uµA′ µν = 0 for constant and timelike uµ. The choice of Lorentz frame fixes
uµ to point along the time axis. Starting from the metric perturbation:

gµν = ηµν + hµν +O
(
[hµν ]

2) , (7)

in the new co-ordinate system we obtain:

g′µν = ηµν + hµν − ξµ,ν − ξν,µ , (8)

from which we immediately relate the metric perturbations between the two co-ordinate systems as:

h′µν = hµν − ξµ,ν − ξν,µ . (9)

Contracting both sides of this equation with ηµν gives:

h′ = h− ξµµ − ξνν
= h− 2 ξαα . (10)

Now consider the trace-reversed part of h′µν , namely h
′
µν , which may be simplified as follows:

h′µν = hµν −
1

2
ηµνh

′

= hµν − ξµ,ν − ξν,µ −
1

2
ηµν (h− 2 ξαα)

= hµν −
1

2
ηµνh− ξµ,ν − ξν,µ + ηµν ξ

α
α

= h̄µν − ξµ,ν − ξν,µ + ηµν ξ
α
α . (11)

Substituting our solution h̄µν = Aµνe
iκαxα for the field equations and our solution ξµ = Bµeiκαx

α
for

the transformation between frames into equation (11) yields:

A′µν = Aµν − iκνBµ − iκµBν + iηµνκαB
α . (12)

We may now use the above equation to determine the components of B in terms of Aµν . Imposing the
traceless condition implies contracting equation (12) with ηµν , yielding:

A′µµ = Aµµ − iκνBν − iκµBµ + 4iκαB
α

= Aµµ + 2iκµB
µ = 0 , (13)

which gives the condition:

κµB
µ =

i

2
Aµµ . (14)

We next impose the transverse condition. Let us consider the temporal and spatial parts separately.
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• For ν = 0 we obtain:
A′00 = A00 − 2iκ0B0 − iκαBα = 0 . (15)

However, we have previously derived equation (14) which upon substitution and simplification
gives the temporal component of B as:

B0 = − i

2κ0

(
A00 +

1

2
Aαα

)
. (16)

• For ν = j we obtain:

A′0j = A0j − iκ0Bj − iκjB0

= A0j − iκ0Bj −
κj
2κ0

(
A00 +

1

2
Aαα

)
. (17)

From this we can solve for Bj, which upon simplification yields:

Bj =
i

2κ20

[
−2κ0A0,j + κj

(
A00 +

1

2
Aαα

)]
. (18)

We now have the four constant coefficients for Bµ. We know that equations (17) and (18) satisfy
the transverse condition and therefore A′µν ↔ Aµν . The traceless condition implies 1 condition on the
number of independent components of the amplitude tensor. For ν = 0 the transverse condition implies
κµA

µν = 0 which is redundant as we have already considered this. As such A′0j (from the transverse
condition) yields 3 conditions for A′µν (and therefore Aµν). Thus we conclude that the TT gauge gives
us a further 4 constraints and so the number of linearly independent components of Aµν is reduced
from 6 to 2. Therefore the gravitational wave only has 2 independent states of polarisation, as required.

As an example, consider a gravitational wave travelling in the positive z-direction, where kµ =
(ω, 0, 0, κz) ≡ (ω, 0, 0, ω). For such a null vector the conditions kµAµν = 0 and A0ν = 0 imply that
A3ν = 0 also. Thus the only non-zero components are A11, A12, A21 and A22. However, using the
traceless condition Aµµ = 0 we also obtain A22 = −A11. Finally, we know that by symmetry A12 = A21

and thus we may write the amplitude tensor for such a gravitational wave as:

Aµν =


0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

 , (19)

which only possesses 2 linearly independent components. It is important to note the that in the TT
gauge we have h̄TTµν = hTTµν .

Exercise 2

The gauge satisfying the requirement of the first exercise is also refereed to as the TT (or transverse-
traceless) gauge. Compute the non-zero components of the Riemann tensor in this gauge.
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Solution 2

Recall from Exercise 1 that we defined the transformation x′µ = xµ + ξµ. From the consideration
of nearby geodesics/particles separated by an infinitesimal distance ξµ (where ||ξµ|| � 1) one may
calculate the geodesic deviation equation:

D2ξµ

Dτ 2
= Rµ

ναβu
νuαξβ . (20)

Let us calculate the RHS of equation (20) to first order in hµν . Assuming neighbouring geodesics/particles
vary slowly, we may express the four-velocity as a unit vector in the time direction plus corrections of
O (hµν) and higher. Since the Riemann tensor is already first order in hµν , corrections to uν can be
ignored and we may set uν = (1, 0, 0, 0). With this the non-zero components of the geodesic deviation
equation are found as

D2ξµ

Dτ 2
= Rµ

00β ξ
β . (21)

Since Rµ
00β 6= 0 this implies that Rµ00β 6= 0 also. From the symmetries of the Riemann curvature

tensor we obtain:
Rµ00β = R0µ0β = −Rµ0β0 = −R0µ0β , (22)

which are the only non-zero components. Thus there is only one independent component to the
Riemann curvature tensor. We may write the expression for the Riemann curvature tensor as:

Rµ00β =
1

2
(hµβ,00 + h00,µβ − hµ0,0β − hβ0,0µ)TT , (23)

where the superscript TT denotes evaluation of that quantity in the TT gauge. However, we know
that hµ0 = 0 in the TT gauge and so the last three terms in equation (23) vanish, yielding:

Rµ00β =
1

2
h̄TT
µβ,00 . (24)

From the plane wave solution given in equation (1) we obtain:

h̄TT
µβ,00 = −κ0κ0h̄TT

µβ

= −ω2h̄TT
µβ (25)

and therefore:

Rµ00β = −1

2
ω2h̄TT

µβ . (26)

Finally, in the TT gauge, and given our solution for h̄TT
µβ,00, we may assume h̄TT

µβ ∝ e−iωt and therefore:

Rµ00β ∼ −
1

2
ω2e−iωt . (27)
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